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NON CONFORMING SPACE-TIME GRIDS

FOR THE WAVE EQUATION : A NEW

APPROACH

Laurence Halpern

Abstract. We present a new method to design non-conforming space-time algorithms for
the wave equation. It relies on the use of the Schwarz Waveform Relaxation method, and
allows strong velocity contrasts, together with the use of weakly dispersive meshes.

§1. Introduction

When solving evolution problems in heterogeneous media, it is often desirable to use non
conforming grids in space and time, such a case may be when different time scales in different
media are present. When dealing with wave propagation, this issue is most crucial, due to
numerical dispersion. For example, let us consider the one dimensional wave equation

1

c2(x)

∂2u

∂t2
− ∂2u

∂x2
= 0.

In order to minimize the dispersion, the mesh sizes need to be close to the CFL condition
everywhere. When using the leap-frog scheme for instance, the CFL number γ = c∆t/∆x
must be smaller than 1. For γ = 1, the scheme is exact.
The question of designing a mesh refinement in time and space arises in two ways. The first
application is when one wants to use a finer space discretisation in a small part Ω1, with a
roughly constant speed. In order to keep γ close to 1, one has to discretize time in the same
fashion. The second application is when the velocity is larger in a part Ω1, if a constant space
mesh is required, a finer mesh in time is needed in Ω1. We summarize and generalize with I
domains Ωi such that

(I) either c is constant in R, the space meshes ∆xi are different, c∆ti/∆xi is a constant ,

(II) or the speed in each Ωi is a constant ci, the space mesh ∆x is a constant, the time steps
∆ti are such that ci∆ti/∆x is a constant.

In both cases γ has to be constant, as large as possible, depending on the scheme.
This problem has been widely studied in particular for the transport equation, in connection
with problem (I). The first paper is [1], where the Lax-Wendroff scheme is proved to be stable
with interpolatory transmission conditions. In [2, 3], the leapfrog scheme is studied. Stability
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problems for Dirichlet boundary data are reported. New transmission conditions using discrete
energy estimates are proposed, and proved to be stable.
Our approach is totally different and addresses in particular problems (I) and (II). It relies on
the use of Schwarz waveform relaxation algorithms (SWR). The wave equation in R × (0, T )
is first written as a collection of wave equations in Ωi × (0, T ) with perfectly transmitting
conditions on the boundaries between neighboring subdomains. The solution is calculated
through a Schwarz algorithm. In the case of piecewise constant velocities, it converges in
two iterations on appropriate time windows. We then discretize in time and space using finite
volumes, which enables us to naturally take the transmission conditions into account. The space
and time steps are chosen independently and optimally in each subdomain, and the solution is
transmitted to the neighbour by a projection procedure. For the leapfrog scheme, the total
procedure is stable and convergent in both cases. The tools are energy estimates in case (I) and
Laplace transform in case (II). It is numerically shown to keep the second order accuracy.

§2. About the Schwarz Waveform relaxation method

We consider the second order , one dimensional wave equation with variable wave speed,

L(u) :
1

c2(x)

∂2u

∂t2
− ∂2u

∂x2
, = 0 (1)

on the domain R× (0, T ) with initial conditions u(·, 0) = p and ∂u
∂t

(·, 0) = q.
We first define the classical Schwarz waveform relaxation algorithm in the case of two

subdomains. We introduce two overlapping subdomains Ω1 = (−∞, L) and Ω2 = (0, +∞).
At step k, we solve two subproblems in Ωi×(0, T ), with a Dirichlet data on the boundary given
by the previous step in the other domain. The solution in Ωi× (0, T ) at step k is called uk

i . The
classical Schwarz algorithm extended to space-time domains is then given by:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
1

c2

∂2

∂t2
− ∂2

∂x2
)uk+1

i = 0 in Ωi × (0, T ) for i = 1, 2,

uk+1
i (., 0) = p in Ωi,

∂uk+1
i

∂t
(., 0) = q in Ωi,

uk+1
1 (L, .) = uk

2(L, .), uk+1
2 (0, .) = uk

1(0, .) in (0, T ).

(2)

Theorem 1. For the Schwarz algorithm (2), convergence is achieved in a finite number of

iterations, k ≥ T sup c(x)

L
.

Proof. The proof can be found in [5], and relies on the finite speed of propagation. We describe
it here in the case of constant velocity. Consider the errors Uk

i = uk
i − u. They satisfy system

(2) with zero initial values. Using d’Alembert’s formula, we have

for x− ct > 0, Uk+1
2 (x, t) = 0,

for x− ct < 0, Uk+1
2 (x, t) = Uk

1 (0, t− x

c
),

(3)

and
for x + ct < L, Uk+1

1 (x, t) = 0,

for x + ct > L, Uk+1
1 (x, t) = Uk

2 (L, t− L− x

c
).

(4)
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Figure 1: Evolution of the Schwarz algorithm with Dirichlet transmission conditions

We can now see the end of the proof on Figure 1 using (3) and (4) : at step k, Uk
1 vanishes

for x + ct ≤ kL and Uk
2 vanishes for x− ct ≥ −(k − 1)L. Thus Uk

1 and Uk
2 vanish identically

on the time interval (0, T ) if T ≤ kL/c.

This shows first that the classical method, even with two subdomains, is extremely slow,
and secondly that it needs a large overlap to increase the convergence speed. Note that for any
transmission conditions, the error Uk

1 on the left is a function of x− ct only, while on the right
the error Uk

2 is a function of x + ct only. This in turn implies the following identities for k ≥ 1
and any positive time ⎧⎪⎪⎨⎪⎪⎩

(
∂

∂x
+

1

c

∂

∂t

)
Uk

2 (L, t) = 0,(
∂

∂x
− 1

c

∂

∂t

)
Uk

1 (0, t) = 0.

This observation leads to the following simple but important

Theorem 2. The transmission conditions defined by(
∂

∂x
+

1

c

∂

∂t

)
uk+1

1 (L, t) =

(
∂

∂x
+

1

c

∂

∂t

)
uk

2(L, t),(
∂

∂x
− 1

c

∂

∂t

)
uk+1

2 (0, t) =

(
∂

∂x
− 1

c

∂

∂t

)
uk

1(0, t),

(5)

lead to well-posed initial boundary value problems even without overlap and they are optimal:
convergence in the Schwarz algorithm with these transmission conditions is achieved in two
iterations, i.e. u2

i is identical to u in Ωi.

Table 1 shows the convergence to the accuracy of the numerical scheme of the algorithm
with transmission conditions (5), without overlap. The velocity is c = 1, the computation is
done on (0, T ) with T = 2. The initial data are u(x, 0) = e−50(0.5−x)2 , ∂tu(x, 0) = 0. The
domain (0, 2) is divided into two subdomains (0, 1) and (1, 2). The initial guess (u0

i )i=1,2 is
chosen to be 0. We use the scheme presented in section 3.
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grid error after 2 iterations discretization error
50 x 50 2.6128e-04 2.1515e-02

100 x 100 2.7305e-05 4.9472e-03
200 x 200 3.2361e-60 1.2218e-03
400 x 400 3.9852e-07 3.0321e-04
800 x 800 4.9532e-08 7.5567e-05

Table 1: Convergence in two iterations to the accuracy of the numerical scheme

In view of Theorem 2, we introduce now a general method on non overlapping subdomains.

2.1. The general method

We decompose the domain R into I non overlapping subdomains Ωi = (ai, ai+1), aj < ai for
j < i and a1 = −∞, aI+1 = ∞ as given in Figure 2.

Figure 2: Domain decomposition into I non-overlapping subdomains.

We introduce a general non overlapping Schwarz waveform relaxation algorithm

L(uk+1
i ) = 0 in Ωi × (0, T ),

B−
i (uk+1

i )(ai, t) = B−
i (uk

i−1)(ai, t) t ∈ (0, T ),
B+

i (uk+1
i )(ai+1, t) = B+

i (uk
i+1)(ai+1, t) t ∈ (0, T ),

uk+1
i (x, 0) = p(x) x ∈ Ωi,

∂uk+1
i

∂t
(x, 0) = q(x) x ∈ Ωi,

(6)

whereB±
i are linear transmission operators which we will determine to get optimal performance

of the algorithm. For ease of notation we defined here uk
0 := 0, uk

I+1 := 0, so that the index i
in (6) ranges from i = 1 to I .

Definition 1. The Dirichlet to Neumann operators for the wave equation S−(x0) and S+(x0)
are defined as follows. S−(x0)g(t) = ∂v

∂x
(x0, t), where v(x, t) is the solution of the exterior

problem
L(v) = 0 in (−∞, x0)× (0, T ),

∂v

∂t
(x0, t) = g(t) t ∈ (0, T ),

(7)

with zero initial data, and S+(x0)g(t) = ∂v
∂x

(x0, t) where v(x, t) is the solution of the exterior
problem

L(v) = 0 in (x0,∞)× (0, T ),
∂v

∂t
(x0, t) = g(t) t ∈ (0, T ),

(8)
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with zero initial data.

The general result reads

Theorem 3. Algorithm (6) converges in I iterations on [0, T ] to the solution u of the wave
equation in R such that ∂tu and ∂xu are continuous across the numerical interfaces, for the
following choice of the operators B±

i :

B−
i = (∂x − S−(ai)∂t), B+

i = (∂x + S+(ai+1)∂t).

Proof. The proof is general and goes as follows. We consider vanishing initial data. At step 1,
we have L(u1

i ) = 0 in Ωi = (ai, ai+1). Thus by definition we have on the left B−
2 (u1

1)(a2, ·) =
0. At step 2, the problem in Ω2 has as a left boundary condition B−

2 (u2
2)(a2, ·) = 0. We

define Ω̃2 = (a1, a3) and ũ2
2 in Ω̃2 as u2

1 in Ω1 and u2
2 in Ω2. We define likewise Ω̃I−1 and

ũ2
I−1. We now have an equivalent domain decomposition with (Ω̃2, Ω3, · · · , ΩI−2, Ω̃I−1), and

the functions (ũ2
2, u

2
3, · · · , u2

I−2, ũ
2
I−1). We proceed until the problem is reduced to two or

three domains, depending on I . Suppose I is even. After K = I/2 steps we are led to two
domains Ω̃K = (a1, aK+1) and Ω̃K+1 = (aK+1, aI+1), and two functions ũK

K and ũK
K+1 such

that L(ũK
i ) = 0 in Ω̃i. Then due to the exact transmission conditions we have, at step K + 1,

vanishing boundary conditions for ũK+1
K and ũK+1

K+1, thus ũK+1
K and ũK+1

K+1 vanish. We now have
to go successively downwards with vanishing data to uK+1

K−1 = 0, · · · , u2K
1 = 0 and the same

upwards. Thus at step I , the error vanishes in every subdomain.

2.2. The optimal method in a stratified medium and time windows

Suppose now the velocity to be constant in each subdomain : c ≡ ci in Ωi. We then have

Theorem 4. Suppose the subdomains coincide with the discontinuities. Then algorithm (6)
converges in two iterations if

B−
i = (∂x −

1

ci−1

∂t), B+
i = (∂x +

1

ci+1

∂t), (9)

and T < T1 = min
1<i<I

|ai+1 − ai|
ci

.

This analysis suggests to use time windows on intervals [pT1, (p+1)T1] , where T1 is given
in theorem 4 and p takes integer values. In each window the algorithm is exact in two iterations.

We now concentrate on the discretization of algorithm (6), with local transmission operators
B±

i given by (9). In the case of discontinuous speed, we suppose that T ≤ T1, which implies
by Theorem 3 that u2

i ≡ u/Ωi
for 1 ≤ i ≤ I .

§3. The numerical algorithm

Each domain Ωi is discretized with a mesh ∆xi, the points are numbered from 0 to Ji + 1. The
time interval in Ωi is discretized with a mesh ∆ti, and the time steps are numbered from 0 to
Ni + 1. The discrete value in domain Ωi, at point j and time n is written Ui(j, n).
In order to handle more easily the boundary conditions, we choose a “vertex centered” finite
volume scheme [4]. The displacement u is considered to be constant on the cell (x−∆x/2, x+
∆x/2)× (t−∆t/2, t + ∆t/2) and the derivatives are constant on the dual mesh.
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3.1. Description of the scheme

We consider first the boundary value problem defined as the wave equation in each domain Ωi,
with boundary conditions B−

i ui(ai) = g−
i (ai) and B+

i ui(ai+1) = g+
i (ai+1). We write the inte-

rior scheme by integrating the equation on (xj−∆xi/2, xj +∆xi/2)×(tn−∆ti/2, tn+∆ti/2),
and approximating the remaining derivatives by finite differences. We obtain the classical
leapfrog scheme. We now integrate the equation on the half-cell (ai, ai + ∆xi/2) × (tn −
∆ti/2, tn +∆ti/2). We get the same terms as before, but a boundary term which is the integral
of ∂u/∂x on (tn − ∆ti/2, tn + ∆ti/2). It is handled using the boundary condition, and we
obtain for example on the left.

B−
i (Ui)(0, n) :=

(
∆xi

2C2
i

D+
t D−

t −D+
x +

1

Ci−1

D0
t

)
(Ui)(0, n) = G−

i (n),

where D+
t φ(n) = 1

∆ti
(φ(n + 1) − φ(n)), D−

t φ(n) = 1
∆ti

(φ(n) − φ(n − 1)), D0
t φ(n) =

1
2∆ti

(φ(n + 1)− φ(n− 1)) and the same for the x− derivatives. The right hand side is

G−
i (n) :=

1

∆ti

∫ tn+∆ti/2

tn−∆ti/2

g−
i (τ)dτ,

Within the iterative algorithm, G−
i (n) is now a G−,k

i (n) , whose value is extracted from Ωi−1 at
step k − 1 using the same process. We define

B̃−
i (Ui−1)(Ji−1 + 1, n) :=

(
−∆xi−1

2C2
i−1

D+
t D−

t −D−
x+

1

Ci−1

D0
t

)
(Ui−1)(Ji−1+1, n),

and G̃−,k−1
i−1 (n) = B̃−

i (Uk−1
i−1 )(Ji−1 + 1, n). If the time steps are the same in Ωi and Ωi−1, the

transmission condition leads to G−,k
i = G̃−,k−1

i−1 . If we have different time grids ∆ti in Ωi.
G−,k

i is a vector in RNi+1 and G̃−,k−1
i is a vector in RNi−1+1. We need a projection operator,

defined as follows. Suppose we are given a vector v = (v0, . . . , vN) ∈ RN+1 which represents
the values of a step function on the corresponding intervals In = (tn, tn+1) where t0 = 0,
tN+1 = T and ∪N

n=0In = [0, T ] and the intervals do not overlap. Then we define the scalar
product on RN+1 by

(v,w)N+1 :=
N∑

n=0

|In|vnwn,

where |In| denotes the length of the interval In. We thus obtain the induced norm on RN+1

||v||2N+1 := (v,v)N+1.

We first define the operator F : RN+1 −→ L2(0, T ) which constructs a piecewise constant
function on the intervals In from the vector v,

F : v �−→ f(t) := vn, t ∈ In.

Then we define the operator E : L2(0, T ) −→ RN+1 which projects a given function f(t) onto
a vector v ∈ RN+1 corresponding to a piecewise constant function in the intervals In

E : f(t) �−→ vn :=
1

|In|

∫
In

f(t)dt.
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Denoting by Fi and Ei the corresponding operators using the grid of Ωi, we define the operator
Pi,j : RNi+1 −→ RNj+1 by

Pi,j := Ej ◦ Fi. (10)

The precise implementation of the projection procedure is described in [6]. With these notations
we have on the left G−,k

i = Pi,i−1G̃
−,k−1
i−1 , and the same on the right.

We obtain the discrete Schwarz waveform relaxation algorithm on subdomains Ωi, 1 ≤ i ≤ I
with non-matching grids:

Definition 2. The discrete algorithm corresponding to (6,9) is given by(
1

C2
i (j)

D+
t D−

t −D+
x D−

x

)
(Uk+1

i )(j, n) = 0, 1 ≤ j ≤ Ji, 1 ≤ n ≤ Ni, (11)

B−
i (Uk+1

i )(0, ·) = Pi−1,iB̃
−
i (Uk

i−1)(Ji−1 + 1, ·), (12)

B+
i (Uk+1

i )(Ji + 1, ·) = Pi+1,iB̃
+
i (Uk

i+1)(0, ·), (13)

with the discrete operators

B−
i (Ui)(0, n) =

(
∆xi

2C2
i
D+

t D−
t −D+

x + 1
Ci−1

D0
t

)
(Ui)(0, n),

B̃−
i (Ui−1)(Ji−1+1, n) =

(
−∆xi−1

2C2
i−1

D+
t D−

t −D−
x+ 1

Ci−1
D0

t

)
(Ui−1)(Ji−1+1, n),

(14)

B+
i (Ui)(Ji + 1, n) =

(
∆xi

2C2
i
D+

t D−
t + D−

x + 1
Ci+1

D0
t

)
(Ui)(Ji + 1, n),

B̃+
i (Ui+1)(0, n) =

(
−∆xi+1

2C2
i+1

D+
t D−

t + D+
x + 1

Ci+1
D0

t

)
(Ui+1)(0, n),

(15)

provided with initial values derived in the same way.

We note on formulae (14,15) that the transport operators B±
i are approximated by a Lax-

Wendroff scheme, and that they are discretized differently depending on whether they apply to
Ui or to Ui±1.

3.2. The case of continuous wave speed across numerical interfaces

We denote by V = {V (j)}0≤j≤J+1 a sequence in RJ+2, and we define for V, W ∈ RJ+2 a
bilinear form on RJ+2 by

ah(V, W ) =
∆x

2

J+1∑
j=1

D−
x (V )(j) ·D−

x (W )(j). (16)

Accordingly, for any positive n, V (n) stands for the sequence {V (j, n)}0≤j≤J+1. The discrete
energy En at time step n, global in space, is defined as the sum of a discrete kinetic energy
EK,n and a discrete potential energy EP,n given by

EK,n =
∆x

2

[
1

2C2(0)
(D−

t (V )(0,n))2+
J∑

j=1

1

C2(j)
(D−

t (V )(j,n))2+
1

2C2(J+1)
(D−

t (V )(J+1,n))2

]
,

EP,n = ah(V (n), V (n− 1)),
En = EK,n + EP,n.

(17)

The quantity EK,n is clearly a discrete kinetic energy. En can be identified as an energy by the
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Lemma 5. For any n ≥ 1, we have

En ≥
(

1−
(

C
∆t

∆x

)2
)

EK,n, (18)

where C is defined by C = sup1≤j≤J+1 C(j). Hence, under the CFL condition

C
∆t

∆x
< 1, (19)

En is bounded from below by an energy.

This provides in each subdomain an energy identity and we proved in [6] the following
result.

Theorem 6. Assume that the velocity is continuous on the interfaces ai. If the CFL condition
(19) is satisfied by the discretization in each subdomain, then the non-overlapping discrete
Schwarz waveform relaxation algorithm (11,...,15) is well-posed and converges on any time
interval [0, T ] to the solution of(

1
C2

i (j)
D+

t D−
t −D+

x D−
x

)
(Ui)(j, n) = 0, 1 ≤ j ≤ Ji, 1 ≤ n ≤ Ni,

B−
i (Ui)(0, ·) = Pi−1,iB̃

−
i (Ui−1)(Ji−1 + 1, ·),

B+
i (Ui)(Ji + 1, ·) = Pi+1,iB̃

+
i (Ui+1)(0, ·),

(20)

in the energy norm, i.e.
I∑

i=1

ENi
(Uk

i − Ui) → 0 as k →∞.

The same calculations actually give a stability result for the limit

Theorem 7. With the same assumptions as in Theorem 6, the limit of the iterates given by (20)
satisfies the energy bounds, with a constant C depending only on the L2 norms of the initial
conditions:

I∑
i=1

ENi
(Ui) ≤ C.

3.3. The case of a stratified medium

We suppose again the velocity to be constant in each subdomain : c ≡ ci in Ωi. We define a
local CFL number to be γi = ci∆ti/∆xi. The stability for the pure Cauchy problem implies
γi ≤ 1 (see for instance[7]).

3.3.1. The case γ = 1

We suppose here that γi = 1 in every Ωi. The scheme resumes to

Ui(j, n + 1) + Ui(j, n− 1)− (Ui(j + 1, n) + Ui(j − 1, n)) = 0, (21)
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and the discrete operators are given for any solution of (21) by

B̃−
2 (U1)(J1+1, n) =

1

∆x1

(U1(J1, n)− U1(J1 + 1, n− 1)),

B̃+
1 (U2)(0, n) =

1

∆x2

(U2(1, n)− U2(0, n− 1)).
(22)

We consider first two media Ω1 = (−∞, 0) and Ω2 = (0, +∞).

Theorem 8. In the case of two media Ω1 and Ω2 with the same CFL number γ1 = γ2 = 1, the
discrete algorithm (11,12,13) converges in two iterations to the solution of (20).

Proof. It is mimicked on the continuous case. By (21, 22), we have

B̃−
2 (U1)(J1+1, n) = U1(J1 − n + 1, 1)− U1(J1 − n, 0),

B̃+
1 (U2)(0, n) = U2(n, 1)− U2(n− 1, 0).

Let now the initial values be null. It implies that we have at step 1 B̃−
2 (U1

1 )(J1+1, ·) ≡ 0 and
B̃+

2 (U1
2 )(0, ·) ≡ 0. By linearity we have B−

2 (U2
2 )(0, ·) ≡ 0 and B+

1 (U2
1 )(J1 +1, ·) ≡ 0. We

conclude that U2
i ≡ Ui for i = 1, 2.

When γ is equal to 1, the discrete velocity is equal to the continuous speed. Then Theorem
8 extends easily to

Theorem 9. In the case of I media Ωi with the same CFL number γi = 1, the discrete algorithm
(11,12,13) converges in two iterations to the solution of (20) for T < T1.

3.3.2. The case γ < 1

We consider two media Ω1 = (−∞, 0) and Ω2 = (0, +∞), with velocities c1 and c2 = qc1.
The space mesh is constant, ∆x1 = ∆x2 = ∆x, and ∆t1 = q∆t2. Therefore γ1 = γ2 = γ.
We analyze here the case q = 2. First note that the existence of a solution to (20) is reduced
to the question of uniqueness. Let now Ui be the discrete solution of (20) or (11,12,13) with
vanishing data. We split U2 in Ω2 into an even part {U2P (·, n)}n∈N = {U2(·, 2n)}n∈N and an
odd part {U2I(·, n)} = {U2(·, 2n + 1)}n∈N. We define

V k
1 = B+

1 (Uk
1 )(J1 + 1, ·) ; V k

2 = B−
2 (Uk

2 )(0, ·),
Ṽ k

1 = B̃−
2 (Uk

1 )(J1 + 1, ·) ; Ṽ k
2 = B̃+

1 (Uk
2 )(0, ·).

Hence the projection operators Pi,j have the very special form

(P12V1)2P = V1 ; (P12V1)2I = V1 ; P21V2 =
1

2
(V2P + V2I),

which gives the transmission conditions as

V k+1
2P = Ṽ k

1 = V k+1
2I ; V k+1

1 =
1

2
(Ṽ k

2P + Ṽ k
2I). (23)
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The discrete Laplace transform of a grid function v = {vn}n≥0 on a regular grid with time step
δt is defined for η > 0 by (see for instance [7])

Lv(s) = v̂(s) = δt
∑
n≥0

e−snδtvn, s = η + iτ, |τ | ≤ π

δt
. (24)

Using the Laplace transform of U1, U2P and U2I on the mesh δt = 2∆t, equation (11) in Ω1

becomes the difference equation

(e2s∆t + e−2s∆t − 2)Û1 − γ2
1AÛ1 = 0, (25)

with operator A acting on the j− variables given by

Ag(j) = g(j + 1)− 2g(j) + g(j − 1).

Equation (11) in Ω2 becomes

(1 + e−2s∆t) Û2I(j, s)− 2Û2P (j, s)− γ2
2AÛ2P = 0,

(1 + e2s∆t) Û2P (j, s)− 2Û2I(j, s)− γ2
2AÛ2I = 0.

(26)

According to the results in [6], we denote by r+(z, γ) (resp.r− ) the root whose modulus is > 1
(resp.< 1) for strictly positive η of the characteristic equation

γ2(r − 2 + 1/r) = (z + 1/z − 2). (27)

We then can solve (25) and (26) with Z = es∆t as (see [1] and [3])

Ûk
1 (j, s) = ak

1(s)(r+(Z2, γ1))
j,(

Û2I(j, s)

Û2P (j, s)

)
= ak

2p(s)(r−(Z, γ2))
j

(
Z
1

)
+ ak

2m(s)(r−(−Z, γ2))
j

(
−Z
1

)
.

(28)

The boundary terms V̂ k
j and ̂̃V k

j are given by

∆x1V̂
k
1 = E(Z2, γ,

c1

c2

) ak
1,

∆x1
̂̃
V

k

1 = Ẽ(Z2, γ, 1) ak
1,

(29)

∆x2

(
V̂ k

2I(j, s)

V̂ k
2P (j, s)

)
= ak

2p E(Z, γ,
c2

c1

)

(
Z
1

)
+ ak

2m E(−Z, γ,
c2

c1

)

(
−Z
1

)

∆x2

⎛⎝ ̂̃V k

2I(j, s)̂̃
V

k

2P (j, s)

⎞⎠ = ak
2p Ẽ(Z, γ, 1)

(
Z
1

)
+ ak

2m Ẽ(−Z, γ, 1)

(
−Z
1

) (30)

with factors E and Ẽ given by

k(z) =
1

2

(
z − 1

z

)
, σ(z, γ) =

1

2
(r+(z)− r−(z)),

E(z, γ, q) = σ(z, γ) +
q

γ
k(z), Ẽ(z, γ, q) = −σ(z, γ) +

q

γ
k(z).

(31)
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Transmission conditions (23) become

V̂ k+1
2P = V̂ k+1

2I =
̂̃
V

k

1 ; V̂ k+1
1 =

1

2
(
̂̃
V

k

2P +
̂̃
V

k

2I),

and thus we get the recursion relations

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ak
2m =

Z − 1

Z + 1

E(−Z, γ, c2
c1

)

E(Z, γ, c2
c1

)
ak

2p,

ak+1
2p =

1

4

Z + 1

Z

Ẽ(Z2, γ, 1)

E(Z, γ, c2
c1

)
ak

1,

ak+1
1 =

1

Z + 1

E(Z, γ, c2
c1

)

E(Z2, γ, c1
c2

)

[
(Z + 1)2 Ẽ(Z, γ, 1)

E(Z, γ, c2
c1

)
− (Z − 1)2 Ẽ(−Z, γ, 1)

E(−Z, γ, c2
c1

)

]
ak

2p.

(32)

There is a two-level recursion formula for each coefficient ak+2
j = Rak

j , with a convergence
rate

R(Z, γ) =
1

4Z

Ẽ(Z2, γ, 1)

E(Z2, γ, c1
c2

)

[
(Z + 1)2 Ẽ(Z, γ, 1)

E(Z, γ, c2
c1

)
− (Z − 1)2 Ẽ(−Z, γ, 1)

E(−Z, γ2,
c2
c1

)

]
. (33)

Defining

ρ(z, γ, q) =
Ẽ(z, γ, 1)

E(z, γ, q)
; ρ̃(Z, γ) =

(Z + 1)2

4Z
ρ(Z, γ,

c1

c2

) ρ(Z2, γ,
c2

c1

), (34)

we obtain for the convergence rate of the discrete Schwarz waveform relaxation algorithm

R(Z, γ) = ρ̃(Z, γ)− ρ̃(−Z, γ). (35)

The properties of the solutions r±(z) and of the functions E and Ẽ are given in great details
in [6]. In particular it is proved that for any z �= 1, and γ < 1, E(z, γ, q) �= 0. Furthermore if
z → 1, we have

E(z, γ, q) = O(z − 1) ; Ẽ(z, γ, 1) = O((z − 1)3).

Thus ρ̃ is well-defined for |z| > 1, with ρ̃(1, γ) = 0, and so is R. The convergence rate R(z, γ)
is an analytic function of z for |z| ≥ 1, which corresponds to η ≥ 0. R satisfies a maximum
principle for η ≥ 0 and hence attains its maximum on the boundary η = 0. It is therefore
sufficient to study the behavior of R for η = 0.
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Figure 3: variation of |R(eiτ∆t, γ)| as a function of τ∆t for various values of γ.γ = 0.7, solid,
γ = 0.8, dash, γ = 0.9, dash-dot.

Lemma 10. There exists a strictly positive constant K such that the convergence rate satisfies

sup
|z|=1

|R(z, γ, c1/c2)| ≤ K < 1.

and we conclude as in [6]:

Theorem 11. The scheme (20) is well-posed in the GKS sense. Furthermore let Up
i be the

iterates of algorithm (11,12,13) with the same initial values. Then we have

‖Up
i − Ui‖Ωi×(0,T ) ≤ (K)�

p
2
�maxi=1,2

∥∥U0
i − Ui

∥∥
Ωi

.

where ‖Ui‖2
Ωi×(0,T ) = ∆ti∆xi

∑
n

∑
j |Ui(j, n)|2 and ‖U0

i ‖2
Ωi

= ∆xi

∑
j |U0

i (j)|2.

§4. Numerical results

We first compare our method to two other refinement methods. They do not involve domain
decomposition, and have been analyzed in the case when the velocity is equal to 1 and one
domain is a refinement of the neighbour.

4.1. Some comparisons in the case of two half-spaces

We restrict ourselves to the case where c = 1 and (∆t1, ∆x1) = (2∆t2, 2∆x2) = (2∆t, 2∆x).
The first method, we call the I-method, consists in defining three transmission conditions as
follows. U1(0, n) is obtained by the leapfrog scheme on the dotted stencil in Figure 4. Then
continuity is enforced on the even points : U2(0, 2n) = U1(0, n), and interpolation at odd
points: U2(0, 2n + 1) = 1

2
(U1(0, n) + U1(0, n + 1)). A complete analysis of stability for the
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Lax-Wendroff scheme can be found in [1].

Figure 4: the I-method

In the second method, we call E-method developed in [2], three relations are written be-
tween U1 and U2 which preserve the energy in both domains. They are too complicated to be
written here.
The test case is the same as in [3]. Ω1 = (0, 100) with transparent boundary condition on
the left, and Ω2 = (100, 110) with a transparent boundary condition on the right. The initial
condition is drawn in Figure 5.

Figure 5: Initial value

The time T is equal to 200. The space mesh is fixed equal to ∆x = 0.5, and we take various
values of ∆t.
We start with the case γ1 = γ2 = 1 in Table 2. In this case a uniform mesh would produce
an exact scheme as mentioned in the first paragraph. As noted by the authors in [2], the E-
method produces wrong results. In the coarse domain, the scheme is exact. In the right domain,
interpolation is better by a factor of 2.
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max error in Ω1 max error in Ω2

scheme error, fine grid 1.6098e-15 1.4988e-15
D.D-method 1.8319e-15 0.0089

I-method 1.9429e-15 0.0046
E-method 1.9971e-04 0.4949

Table 2: error in L∞(Ωi × (0, T )) for γ1 = γ2 = 1

We now reduce the coefficient γ, to γ = 0.9091 in table 3. The three methods are compara-
ble on the left domain, in the right domain the interpolation method is the best, there is a factor
2 with the DD-method, and a factor 16 with the E-method.

max error in Ω1 max error in Ω2

scheme error, fine grid 0.0022 0.0006
scheme error, coarse grid 0.009 0.003

D.D-method 0.0068 0.0064
I-method 0.0068 0.0027
E-method 0.0068 0.0437

Table 3: error in L∞(Ωi × (0, T )) for for γ1 = γ2 = 0.9091

We will not diminish γ further, since then the dispersion error would be too large.
In [2] is shown an example with a Dirichlet boundary condition on the right. In that case the
I-method is unstable. We reproduce their example in Figure 6. The velocity is constant equal
to 1. The domains are Ω1 = (0, 100), Ω2 = (100, 103.5), T = 1000. The space meshes are the
same in both domains equal to 1,γ1 = γ2 = 0.913.

Figure 6: Solution of the I-method in Ω1 ∪ Ω2 for Dirichlet boundary condition after 400
timesteps

This phenomenon is also reported in [1] as a personal communication of Oliger. No detailed
proof is avalaible so far. Another case is where we modify Ω2 and γ a little, taking Ω2 =
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(100, 110), γ = 0.9524. The numerical data are the same as before. The scheme remains
stable, and we have the errors inTtable 4.

max error in Ω1 max error in Ω2

scheme error, fine grid 0.0265 0.0265
scheme error, coarse grid 0.1050 0.1050

D.D-method 0.0764 0.0693
I-method 0.0471 0.0425
E-method 0.0781 0.1062

Table 4: error in L∞(Ωi × (0, T )) for Dirichlet boundary condition, γ1 = γ2 = 0.9524

Here the I-method is the best, followed by the present method, especially in the fine grid.
In Figure 7 we draw the L∞ error in time and space in both domains as a function of the mesh,
for the same data. We see that the present method is of order 2.
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Figure 7: error in L∞(Ωi× (0, T )) as a function of the time step, logarithmic scale. On the left
the coarse grid, on the right the fine grid. Comparison between the three methods

4.2. A few more difficult cases

The domains are Ω1 = (0, 1), Ω2 = (1, 2), T = 1. The velocity are c=1 in Ω1, c=1.7 in Ω2.
The initial data is as in Figure 5, supported in Ω1. We choose first 11 points in space in each
domain, and the number of points in time such that γ = 1 in both domains, that is 11 points in
time in Ω1 and 18 in Ω2. Thereafter the meshes are divided by 2. In Figure 8 we draw the L∞

error in time and space in both domains as a function of the mesh, and we see that the method
is still of order 2.
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Figure 8: error in L∞(Ωi× (0, T )) as a function of the time step, logarithmic scale. On the left
the coarse grid, on the right the fine grid.

We consider now the space interval [0, 6] divided in 6 layers ci ∈ {1, 2/3, 1/2, 3/4, 4/5}.
The six numerical domains are aligned with the discontinuities. We chose the same space mesh
in the subdomains, ∆xi = 1/50, and the local time steps are such that γi is close to 1. The time
interval is [0, 1].

Figure 9: Convergence in 2 iterations with local transmission conditions on time interval [0 1]

§5. Conclusions

We have proposed a new way of considering the mesh refinement problem. Applied to the
leapfrog scheme, we have proven it to be stable, and given numerical evidence of an order 2
in time. The precise study of the accuracy will be done in a forthcoming paper. Its flexibility
allows for the use of other schemes, like finite elements in time and space for instance, and
other equations. It is robust and will extend to higher dimensions.
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