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WAVE SCATTERING BY A PERIODIC ARRAY

OF IN-PLANE CRACKS AT THE INTERFACE

BETWEEN DISSIMILAR MEDIA

Nathalie Favretto-Cristini

Abstract. We investigate analytically the behaviour of time-harmonic elastic waves in the
neighbourhood of a plane interface between dissimilar elastic media, where a periodic ar-
ray of in-plane cracks exists. Waves incident on such a boundary excite a lot of propagating
and evanescent scattered waves, and the incident energy is subjected to a complicated pro-
cess of redistribution. The aim of the work is to quantify the amount of incident wave en-
ergy partitioned among the propagating scattered waves. The scattered fields are expressed
in terms of Fourier series with coefficients depending on Legendre functions. Energies
associated with the scattered waves are evaluated as a function of the incidence angle, and
results are presented for three different distributions of the cracks at the interface. We
show that the amount of the reflected wave energy and the amount of the diffracted wave
energy increase with increasing percentage of cracks at the interface. We also suggest that,
contrary to the case of an interface between identical media, the energy conservation law
cannot be applied in the work presented here since phenomena associated with interface
wave scattering are not taken into account.

§1. Introduction

Intensive studies have addressed the problem of elastic wave scattering by a periodic array of
cracks because of its conceptual and practical importance in non destructive testing of materi-
als, for example. Angel and Achenbach [1] have presented an exact analysis of the reflection
of elastic waves by a planar array of periodically spaced cracks of equal lengths. By the use
of Fourier series techniques, the mixed-boundary value problem for a typical strip is reduced
to a singular integral equation of the 1st kind for the dislocation density across the crack faces.
The equation is then solved numerically. The exact results are, however, rather complicated.
The applicability of an approximate solution to the exact problem was investigated in numer-
ous papers (see ref. [2] and the excellent review given there), in which the array of cracks
are generally replaced by a layer of massless springs. The interface stiffnesses are chosen so
that the spring layer produces the same static displacements as the array of cracks, when the
elastic medium is subjected to distant uniform tension. Angel and Achenbach [3] have consid-
ered this quasi-static model as a low-frequency limit of the exact solution. In this case, only
one specular reflected wave has to be taken into account at some distance from the plane of
cracks. However, as the ratio of incident wavelength-to-array period decreases, the quasi-static
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model becomes invalid, since more and more propagating reflected waves which travel into
off-specular directions are generated by the secondary sources (i.e., cracks) at the interface.

Recently, Danicki has studied this problem from a very particular point of view [4, 5]. To
solve the problem of wave scattering by a periodic array of cracks, the BIS method [6] has been
applied. The method exploits some properties of Fourier series with coefficients expressed by
Legendre functions. Three features make the use of Legendre functions particularly well-suited
for modeling elastic wave fields by a periodic array of cracks. First, the series are periodic, as
required by Floquet’s theorem. Moreover, the identities concerning Legendre functions satisfy
implicitly the mixed-boundary conditions. Finally, they also exhibit square-root singularity, in
correspondence with the singularity of the wavefields at the crack edges. The solution to the
wave-scattering problem can thus be obtained efficiently in an analytical way.

In the present paper, using the fundamentals of the BIS method, we investigate the compli-
cated process of redistribution of the incident energy (associated either with a compressional
wave, called a P-wave, or with a transverse wave, called a S-wave), as a function of the inci-
dence angle, among the propagating scattered waves in the vicinity of a solid/solid interface
with air (or gas)-filled cracks. For the sake of brevity, the influence of the characteristics of
the crack array and the influence of the properties of the incident wave are shown. Numerical
results, presented here for applications of geophysical interest [7], viz. the interface between
chalk and granite, concern only the incident P-wave.

§2. Description of the configuration and formulation of the problem

We investigate the scattering of time-harmonic elastic waves by a periodic array of cracks at the
boundary between two dissimilar media. The media are assumed to be homogeneous, isotropic,
and perfectly elastic half-spaces, with mass density ρ, P-wave velocity CP and S-wave velocity
CS . We refer to the upper medium (x2 < 0) as solid B and to the lower medium (x2 > 0) as
solid A. The cracks lie in the plane x2 = 0 and extend to infinity in the direction perpendicular
to the (x1 − x2) plane. The excitation being assumed to be independent of the x3-direction,
the problem is a two-dimensional one. The period of the crack array is Λ; K = 2π

Λ
denotes

the spatial wavenumber. The regions of perfect bonding between the elastic half-spaces are 2w
wide.

We consider a time-harmonic plane wave, characterized by the wavelength λinc, and angular
frequency ω, that propagates in the solid B and hits the interface under the incidence angle αinc,
with respect to the normal to the interface. The associated incident particle displacement vector
Uinc in the solid B can be written as:

Uinc(x1, x2; t) = uinc(x1, x2) exp (−jqincx2) exp (−jpincx1) exp (jωt) (1)

where uinc = (sin αinc, cos αinc) is the unit propagation vector of the incident P-wave,
or uinc = (cos αinc,− sin αinc) is the unit propagation vector of the incident S-wave, and
kinc = (pinc, qinc) = kB

P,S the incident P- or S-wavevector. The amplitude of the incident
displacement vector is assumed to be unity. At the interface, the incident displacement vector
Uinc and the traction-force vector Tinc are related by:

Uinc = G
′
inc Tinc (2)
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where the matrix G
′
inc, given below, is defined from the known equations of motion [8], in

which absence of body forces is assumed:

Tij,j + ρω2 Ui = 0 (3)

,j denotes partial differentiation with respect to xj .
After hitting the cracked interface, the incident wave excites a lot of diffracted waves that

propagate in different directions. At the interface, the full wavefield (particle displacement
vector UA,B

tot and traction-force vector TA,B
tot ) in each medium, governed by equations of motion

3, is expressed in the form:{
UA

tot = UA
diff

TA
tot = TA

diff

and

{
UB

tot = Uinc + UB
diff

TB
tot = Tinc + TB

diff

UA,B
diff and TA,B

diff characterize the diffracted fields in the solids A and B. At the interface,
they are formulated as an infinite series of Bloch waves, as required by Floquet’s theorem [8]:[

UA,B
diff

TA,B
diff

]
=

+∞∑
n=−∞

[
UA,B

n

TA,B
n

]
exp (−jpnx1) exp (jωt) (4)

where pn = pinc + nK (0 < pinc < K) is the Bloch wavenumber and n the diffraction
order. The zeroth-diffracted waves correspond to classical reflections and transmissions, while
the nth-diffracted waves (with n different from zero) correspond to off-specular reflections and
transmissions induced by the secondary sources at the interface (i.e., by the periodic array of
cracks). pinc is the horizontal wavenumber common to all waves of diffraction order zero. The
scattered far-field consists of a superposition of a finite number of propagating P- and S-wave

components, with the general form exp (−jpnx1) exp
(
±j
(
qA,B
P,S

)
n
x2

)
exp (jωt). In order

to satisfy the radiation conditions by the wavefield in the half-spaces, the values of
(
qA,B
P,S

)
n
are

chosen following the rule
(
qA,B
P,S

)
n

=

[(
kA,B

P,S

)2
− p2

n

] 1
2

= −j

[
p2

n −
(
kA,B

P,S

)2] 1
2

, with P- and

S-wavenumbers kA,B
P,S .

We consider the coefficients UA,B
n and TA,B

n of eq.4 as the fundamental quantities to be
determined. At the interface, these coefficients are related by:

UA,B
n = GA,B

n TA,B
n (5)

where the matrices GA,B
n are defined from the equations of motion 3:

GA
n =

j

µADA

⎡⎣ (
kA

S

)2 (
qA
S

)
n

pn

((
kA

S

)2 − 2p2
n − 2
(
qA
P

)
n

(
qA
S

)
n

)
−pn

((
kA

S

)2 − 2p2
n − 2
(
qA
P

)
n

(
qA
S

)
n

) (
kA

S

)2 (
qA
P

)
n

⎤⎦
GB

n = −tG′
n

µA = ρA

(
CA

S

)2
is the Lame coefficient of solid A, and DA =

[(
kA

S

)2 − 2p2
n

]2
+4p2

n

(
qA
P

)
n

(
qA
S

)
n

is the known characteristic equation of the Rayleigh wave propagating at the free surface of
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solid A [8]. tG′
n is transposed to G′

n. G′
n, and also G

′
inc, is similar to GA

n calculated using the
properties of solid B.

In this paper, we investigate wave scattering by a periodic array of thin air-filled cracks at the
boundary between two welded elastic half-spaces. The resulting mixed-boundary conditions,
satisfied by the full-wavefields at x2 = 0, are thus:{

TA
tot = TB

tot

∆U = UA
tot −UB

tot = 0
between cracks, (6)

TA
tot = TB

tot = 0 on cracks, (7)

where the function ∆U denotes the particle displacement discontinuity at the interface. In
order to simplify these expressions, we introduce the auxiliary function V (x1) [4]:

V (x1) =
∂

∂x1

(∆U (x1)) =
+∞∑

n=−∞
Vn exp (−jpnx1) exp (jωt)

where

Vn = gn TA
n − ginc Tincδn0⎧⎨⎩ gn = −jpn

[
GA

n +t G′
n

]
ginc = −jpinc

[
G

′
inc +t G

′
inc

] (8)

It has to be noted that the function V (x1) determines ∆U (x1) within a constant. The
boundary conditions 6 and 7 can then be reformulated, just for one period of the crack array,
as:

between cracks, i.e. ∀x1 | |x1| < w,

{
V (x1) = 0

∆U (x1 = 0) = 0
(9)

on cracks, i.e. ∀x1 |
{
−Λ + w < x1 < −w

w < x1 < Λ− w
, TA

tot = 0 (10)

§3. Reformulation of the problem and solution

An efficient way of solving such a problem can be found in [4]. Nevertheless, as the objectives
of our work are completely different from those described in the paper, we need to derive
equations for the case of a periodic array of cracks at the interface between two different elastic
media. We then adapted the original work to our configuration. Refering the reader for details
to the original paper [4], we write down only the most relevant equations that are necessary for
the comprehension of our work.

Refering to some interesting properties of the Legendre functions Pν of the 1st-kind and
degree ν involved in Fourier series [6, 9], we note that the periodicity of the problem, the
exhibition of the square-root singularities at the crack edges, and the boundary conditions 10
and 9 are automatically satisfied if the functions Vn and TA

n are searched in the general form:
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TA
n =

M2∑
m=M1

tm Pn−m (cos ∆) (11)

Vn =

M2∑
m=M1

Sn−m vm Pn−m (cos ∆) (12)

where Sν =

∣∣∣∣ 1 (ν ≥ 0)
−1 (ν < 0)

(ν ∈ Z). The variable ∆ = K w = π 2w
Λ

describes the

relative width of perfect contact between cracks. The summation limits M1 and M2 over m are
supposed to be large but finite.

Substitution of TA
n and Vn in 8 by their representation 11 and 12 leads to:

∀n ∈ ]−∞, +∞[ ,

M2∑
m=M1

Sn−m vmPn−m (cos ∆) = gn

M2∑
m=M1

tmPn−m (cos ∆)−ginc Tincδn0

(13)
In order to reduce the number of unknowns in the problem, a relation between vm and tm

is established from 13 following the same rule as that explained in [4]:{
∀n � 0, ∀m ∈ [M1, M2] vm = g∞ tm

∀n < 0, ∀m ∈ [M1, M2] vm = tg∞ tm
(14)

where g∞ and tg∞ are the asymptotic limits of the matrix gn, such that:{ ∀n ∈ ]−∞, N1[ , pn < −p∞, lim
n→−∞

gn (pn) = Spn
tg∞

∀n ∈ ]N2, +∞[ , pn > p∞, lim
n→+∞

gn (pn) = Spng∞
(15)

with

g∞ =
1

2ω2

⎡⎣ j
(
XA

(
kA

S

)2
+ XB

(
kB

S

)2) (
XA

(
kA

P

)2 − XB

(
kB

P

)2)
−
(
XA

(
kA

P

)2 − XB

(
kB

P

)2)
j
(
XA

(
kA

S

)2
+ XB

(
kB

S

)2)
⎤⎦

and XA,B =

(
kA,B

S

)2
ρA,B

((
kA,B

S

)2
−
(
kA,B

P

)2) . N1 < 0, N2 > 0, and p∞ are sufficiently large.

For an interface between two elastic media with different properties, we can note that the
asymptotic limits of gn are quite different from the asymptotic limit determined for an interface
between identical media and reported in [4]. From the approximation 14, it follows that 13 can
be rewritten only in terms of the unknowns tm (Tinc being known from 2):

∀n ∈ [N1, 0[ ,

M2∑
m=M1

(Sn−m
tg∞ − gn) tm Pn−m (cos ∆) = 0

∀n ∈ [0, N2] ,

M2∑
m=M1

(Sn−m g∞ − gn) tm Pn−m (cos ∆) = −ginc Tincδn0

(16)
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Eqs.16 express implicitly the boundary condition 10 and the first relation of the boundary
condition 9. After some algebric manipulations, the second relation of the boundary condition
9 can be written for r �= 0 and n fixed arbitrarily (here, n=0), with help of Dougall’s expansion
[9] and eq.14, in the form:

M2∑
m=M1

(−1)m g∞ tm P−m− pinc
K

(− cos ∆) = 0 (17)

Further analysis shows that the summation limits M1 and M2 over m can be defined as (see
discussion in [4] and in the references given there): M1 = N1 ≤ 0 and M2 = N2 + 1 > 0.

Solving the scattering problem and recovering the diffracted wavefields in media then re-
quire to find a nontrivial solution to the linear system of [N2 −N1 + 2] equations (i.e. eqs.16
and 17) on [N2 −N1 + 2] unknowns (i.e. tm). The summation limits N1 and N2 over n are
dependent on the degree of accuracy that is judiciously chosen for the approximations 15 of
the matrix gn, and also on the physical behaviour of the cracked interface. In particular, all the
propagating diffraction orders must be taken into account.

§4. Evaluation of the scattered energy

Since we are mainly interested in the redistribution of the incident wave energy among the
propagating diffracted waves, we introduce the time-averaged energy flux Π in the x2-direction
for each diffraction order n and for the incident wave [8]:

(
ΠA,B

n

)
x2

= −1
2
.
[(

TA,B
n

)
21

(
jω
(
UA,B

n

)
1

)∗
+
(
TA,B

n

)
22

(
jω
(
UA,B

n

)
2

)∗]
(ΠP,Sinc)x2

= −1
2
.
[
(TP,Sinc)21

(
jω UP,Sinc

1

)∗
+ (TP,Sinc)22

(
jω UP,Sinc

2

)∗] (18)

where the asterisk denotes complex-conjugate quantities and . (x) the real part of x. The
displacement vector UA,B

n and the traction force vector TA,B
n are defined from the solution to

the system of equations described in the previous section and from eq.5, while UP,Sinc and
TP,Sinc are expressed from eqs 1 and 2. On the strength of eqs 18 and 5, the energy associated
with the propagating nth-diffracted P- and S-waves can be defined in the vicinity of the cracked
interface by: (

ΠA,B
P,S

)n
x2

=
1

2
ρA,B ω3 .

[∣∣∣(FA,B
P,S

)
n

∣∣∣2 (qA,B
P,S

)
n

]
where the variables

(
FA,B

P,S

)
n

are expressed as a function of the traction force vector com-

ponents [7]:[ (
FA

P

)
n(

FA
S

)
n

]
=

j

µA DA
n

[
2pn

(
qA
S

)
n

(
kA

S

)2 − 2p2
n

−
[(

kA
S

)2 − 2p2
n

]
2pn

(
qA
P

)
n

] [ (
TA

n

)
21(

TA
n

)
22

]
[ (

FB
P

)
n(

FB
S

)
n

]
=

j

µB DB
n

[
2pn

(
qB
S

)
n

−
[(

kB
S

)2 − 2p2
n

]
(
kB

S

)2 − 2p2
n 2pn

(
qB
P

)
n

] [ (
TB

n

)
21(

TB
n

)
22

]
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Since both media are lossless, we suppose that the energy flux interferences between the
different diffraction orders can be neglected [10], and that the diffracted and incident fields then
satisfy the following energy conservation law:

1 +

∑
n

(
ΠB

n

)
x2

(ΠP,Sinc)x2

−
∑

n

(
ΠA

n

)
x2

(ΠP,Sinc)x2

= 0 (19)

where all summations are to be carried out over the collection of the pertaining propagating
orders.

Figure 1 illustrates the changes in the ratio

∣∣∣∣ (ΠA,B
P,S )

n

x2

(ΠP,Sinc)
x2

∣∣∣∣, associated with the different

diffraction orders in the chalk and granite materials, as a function of the incidence angle αinc as-
sociated only with the incident P-wave. The properties of the materials are: ρB = 1180kg/m3,
CPB = 2670 m/s, and CSB = 1120 m/s for chalk, ρA = 2700 kg/m3, CPA = 6440 m/s,
and CSA = 3170 m/s for granite. The computations were carried out for three different crack
distributions at the interface: 1% of cracks (i.e. 2w/Λ = 0.99) which represents the case
of a quasi-perfectly welded interface; 50% of cracks (i.e. 2w/Λ = 0.5); 75% of cracks (i.e.
2w/Λ = 0.25). The incident P-wavelength λinc in chalk was chosen to be greater than the
spatial wavelength Λ of the crack distribution at the interface (Λ = 1

3
λinc). In this case, only

one diffracted S-wave of order -1 is propagative in chalk, and only for the incidence angles
αinc greater than 38. The critical incident angle, at which the P-wave (respectively, S-wave)
transmitted in granite becomes an inhomogeneous wave whose amplitude decays exponentially
with distance away from the interface, is αinc = 24.5 deg. (respectively, αinc = 57.4 deg.). For
solving the scattering problem, we chose the summation limits N1 and N2 over n such that
N1 = −10 and N2 = 10 (all the propagating orders are taken into account in the calculations
and the relations 15 are well satisfied). Figure 1 shows that the amount of S-diffracted energy,
and also the amount of P-reflected energy, increase with increasing percentage of cracks at the
interface. Consequently, neglecting the diffracted waves arising from the crack array at the
interface leads to local underestimation of the actual amplitude of the reflected P-waves.

The most striking result is illustrated in Figure 2 which represents the computation of the
first member of eq.19 as a function of the incidence angle αinc. We can note that the energy
conservation law is not satisfied for the different crack distributions (except for the case of
1% of cracks which is not shown here for the sake of brevity), contrary to the case of an
interface between identical media [4]. One explanation to this striking result could be that the
energy flux interferences cannot be neglected in such a configuration because, although the
media in contact are elastic, the interface is laterally heterogeneous and not uniformly welded.
Another explanation could be provided by analogy with studies in Non Destructive testing or
in Acoustics. The spatial distribution of the welded contact areas and cracks at the interface
can be viewed as a comb transducer which is commonly used for excitation and detection of
surface waves. A part of the incident P-wave energy can be transferred to an interface wave
(IW) which propagates along the interface between dissimilar elastic media. The IW can then
be scattered by the crack distribution and recombined coherently into P-waves propagating in
the bulk media. The part of the energy associated to the SW transferred to the bulk waves must
then be taken into account in the energy conservation law 19, which will be done in future
works.
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§5. Conclusion

In the present paper, we have investigated the behaviour of time-harmonic elastic waves in the
neighbourhood of a plane interface between dissimilar elastic media, where a periodic array of
in-plane air-filled cracks exists. The aim of the work was to quantify the amount of incident
wave energy distributed among the propagating scattered waves. The wave-scattering problem
was formulated making use of the fundamentals of the theory recently developed by Danicki.
Although in essence his method remains valid, the periodic array of cracks at the boundary
between dissimilar media needed reformulation of the problem. The scattered fields were ex-
pressed in terms of Fourier series with coefficients depending on Legendre functions. Energies
associated with the scattered waves of zeroth- and minus-first-diffraction order have been eval-
uated as a function of the incidence angle and for different crack distributions at the interface.
We have shown that the amount of P-reflected energy (associated with zeroth-diffraction order)
and the amount of S-reflected energy (associated with minus-first-diffraction order) increase
with increasing percentage of cracks at the interface. As a result, neglecting the crack array
leads to local underestimation of the actual amplitude of the reflected P-waves. We also sug-
gest that, contrary to the case of an interface between identical media, the energy conservation
law cannot be applied in this work since phenomena associated with interface wave scattering
are not taken into account.
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Figure 1: Energy associated with the different diffraction orders in the chalk and granite materials as a
function of the incidence angle and for different crack distributions at the interface (1% of cracks (top

left), 50% of cracks (top right), 75% of cracks (bottom left)).
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Figure 2: Computation of the first member of eq.19 as a function of the incidence angle and for two
crack distributions at the interface chalk/granite (50% of cracks (left), 75% of cracks (right)).
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