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ANALYSIS OF THE BEAM DECOMPOSITION

PROBLEM IN SIGNAL BASED RAY

TRACING

P. Cristini, E. de Bazelaire and C. Revaux

Abstract. The beam decomposition problem is the key problem that needs to be solved
in Signal Based Ray Tracing (SBRT). This is an elementary problem which consists in
solving the reflection/transmission problem of a ray at a circular interface. In this article,
we give in details how it is possible to perform such a decomposition.

Keywords: ray tracing, reflection, transmission, circular interface, caustic, winding num-
ber integrals
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§1. Introduction

Signal Based Ray Tracing is a new geophysical tool designed for the fast computation of trav-
eltimes between a source and an array of receivers. It is based on the geometric optics approx-
imation for the high frequency wave propagation. Its originality is to perform the propagation
of rays through a model with a complex geometry of the interfaces by using signal processing
concepts. It start by noticing that it is not possible with a band limited signal to determine the
exact traveltime. Therefore making an error in the evaluation of the traveltimes is permitted if
it stay within the bounds given by the signal characteristics. This possibility is in a first time
used in SBRT to simplified the model in which we propagate the rays. Interfaces that are en-
countered are interpolated with C1 continuous circle arcs. In a second time, beams, for which
all rays that are inside have a traveltime difference less than the fixed error, are propagated
instead of individual rays. Consequently, the difficult problem of propagating the rays through
a complex model is reduced to a set of elementary problems (reflection/transmission of a beam
at a circular interface) which can be solved analytically. This article will concentrate on the so-
lution of these elementary problems. For the sake of simplicity, we will only consider constant
velocity media which means that ray trajectories will be straight lines.
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Figure 1: Geometry of the propagation of a ray striking a circular interface

§2. Reflection/Transmission of a beam at a circular interface

This section is devoted to the analysis of the reflection/transmission of a beam at a circular
interface. We first establish some preliminary results that are necessary to the next sections. In
a first part, we consider the reflection/transmission of an individual ray by means of Fermat’s
principle of traveltime stationarity extended to higher orders. This corresponds to a local point
of view of the propagation process but does not fullfill the needs of SBRT. Therefore the global
point of view is investigated in a second part.

2.1. Preliminary results

In this section, we give the basic equations which will be used to solve the problem of beam
decomposition. Let first consider three points : S, C and I which respectively represent the
location of a point source, the location of the center of the circular interface and the location
a point of this interface (see figure 1). Their coordinates are given by : S : {Xs, Ys} ; C :
{Xc, Yc} ; I : {Xc + R cos θ, Yc + R sin θ}

where R is the radius of the circle. It is real positive number.
We next consider the following vectors :

−→
IC,

−→
IS and

−→
T the tangent vector to the interface

at point I. Hence, we have :
−→
IS : {X −R cos θ, Y −R sin θ}; −→

IC : {−R cos θ, −R sin θ}; −→
T : {−R sin θ, R cos θ}

with X = Xs −Xc and Y = Ys − Yc
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The scalar product of these vectors can be also expressed in the following form by intro-
ducing i1 the angle of incidence.

−→
IS.
−→
IC = R1L1 cos i1

−→
IS.
−→
T = −R1L1 sin i1

where R1 is the signed radius of the circle and L1 is the signed curvature of the incoming
wavefront. The sign conventions which are used are the classical sign conventions of optics. L1

and R1 are respectively the oriented segment IS and IC with the convention that it is positive if
it is oriented in the direction of propagation. These conventions are used to ensure that the sign
of the cosinus of the angle of incidence is positive.

From the two ways of expressing the scalar product of the abovementioned vectors, we get:

X cos θ + Y sin θ = sgn(R1) [R1 − L1 cos i1] (1)

X sin θ − Y cos θ = sgn(R1)L1 sin i1 (2)

In the same way, we get for another point I′ of the interface corresponding to angle θ +∆θ:

X cos (θ + ∆θ) + Y sin (θ + ∆θ) = sgn(R1) [R1 − L′
1 cos i′1] (3)

X sin (θ + ∆θ)− Y cos (θ + ∆θ) = sgn(R1)L
′
1 sin i′1 (4)

Then, from equations (3) and (4), we can obtain an expression of cos i′1 and sin i′1 :

L′
1 cos i′1 = R1 (1− cos ∆θ) + L1 cos (i1 −∆θ) (5)

L′
1 sin i′1 = R1 sin ∆θ + L1 sin (i1 −∆θ) (6)

2.2. Local point of view of ray propagation (Fermat’s principle)

The reflection/transmission of ray at an interface is governed by Fermat’s principle. Fermat’s
principle states that the path followed by a ray to connect a source to another point is the path for
which the time taken has a stationnary value with respect to an infinitesimal variation. Taking
into account the sign conventions, traveltime between point S and S′ is :

T =
SI

V1

+
IS′

V2

= −L1

V1

+
L2

V2

(7)

With V1 and V2 the wave velocities in medium 1 and 2. In the case of reflection, we have,
V1 = V2 and R1 = −R2. The expression of L1 is :

L1 = ±
√

(X −R cos θ)2 + (Y −R sin θ)2 (8)

Since the circular interface can be a parametrized as a function of the angle θ, an infinitesi-
mal variation of the path corresponds to a derivation with respect to θ.
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2.2.1. First order stationarity

According to equation (8), the first order derivative of L1 with respect to θ is :

dL1

dθ
=

1

2

2R sin θ (X −R cos θ)− 2R cos θ (Y −R sin θ)

L1

=
R (X sin θ − Y cos θ)

L1

(9)

By using equation 2, we have :

dL1

dθ
= R1 sin i1 (10)

And in the same way, we get :
dL2

dθ
= R2 sin i2 (11)

Consequently stationarity of traveltime through first order leads to the well-known Snell’s
law :

R1 sin i1
V1

=
R2 sin i2

V2

(12)

This equality defines a new parameter that will denoted by α. Note that it is not common to
express Snell’s law in this form. The reason for this is the sign convention we use. The change
of direction of the reflected ray is taken into account with the change of sign of R instead of
considering a negative wave velocity as usually done. For a given direction of the incident ray,
Snell’s law indicates the direction of the outgoing ray.

2.2.2. Second order stationarity

In order to obtain the second order derivative with respect to θ, we need to express the first order
derivative of angle i1. This quantity is obtained by deriving equation (2) and using equation
(1). Some straightforward calculations leads to :

di1
dθ

=
R1

L1

cos i1 − 1 (13)

The same type of equation is obtained for medium 2 and the second order derivative of
traveltime T with respect to θ is :

d2T (θ)

dθ2
=

d

dθ

(
R1 sin i1

V1

− R2 sin i2
V2

)
= R1

cos i1
V1

di1
dθ
−R2

cos i2
V2

di2
dθ

= R1
cos i1
V1

(
1− R

L1

cos i1

)
−R2

cos i2
V2

(
1− R

L2

cos i2

)
The nullification of the second order leads to the well-known equation known in optics as

the conjugaison formula :

R1

V1

(
cos i1 −

R1

L1

cos2 i1

)
=

R2

V2

(
cos i2 −

R2

L2

cos2 i2

)
(14)
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This equality defines a new parameter denoted by β. Equation 14 gives the location of S′

i.e. the value of L2. S′ is the location of the center of curvature of the outgoing wavefront.
This new point source can be either real or virtual depending on the sign of L2. This is a local
equation. If the angle of incidence of the ray is modified then the new point source position
moves to another location. The curve which corresponds the locus of the successive center of
curvature is called the caustic ( see Figure 2). The outgoing wavefront is circular only if the
caustic reduces to a point which is not the case in general.

2.2.3. Third order stationarity

In the same way, it is straightforward to get for the third order derivative of traveltime T :

d3T (θ)

dθ3
= R

sin i1
V1

(
1− 3

R

L1

cos i1

(
1− R

L1

cos i1

))

−R
sin i2
V2

(
1− 3

R

L2

cos i2

(
1− R

L2

cos i2

))
This equation takes the following form when considering the two constants α and β, we intro-
duced in sections 2.2.1 and 2.2.2.

d3T (θ)

dθ3
= 3Rαβ

(
V1

L1

− V2

L2

)
(15)

It is then easy to see that the nullifcation of the third order derivative occurs only in particular
configurations.

2.2.4. Particular configurations

Stationarity beyond all orders occurs for :

α = 0

β = 0(
V1

L1

− V2

L2

)
= 0

The last equation is a special case in which the two sources S and S′ are called Weierstrass
points.

2.3. Global point of view of ray propagation

Instead of working with infinitesimal variation of the position of a point on the interface, we
consider two points I and I′ on the circle which correspond to angles θ and θ + ∆θ of the
parametrisation of the circle. The variation of the distance between the point source S and the
two points I and I′ is ∆L1 = L1 − L′

1. L′
1 is the oriented segment I′S :

L′
1 = ±
√

(R cos (θ + ∆θ)−Xs)
2 + (R sin (θ + ∆θ)− Ys)

2



464 P. Cristini, E. de Bazelaire and C. Revaux

The square of this distance is :

L′2
1 = R2 + X2 + Y 2 − 2R [X cos (θ + ∆θ) + Y sin (θ + ∆θ)]

Combining equations (1) and (2), we have :

X cos (θ + ∆θ) + Y sin (θ + ∆θ) = R cos ∆θ − L1 cos (i1 + ∆θ)

As a consequence, we get :

L′2
1 = R2 + X2 + Y 2 − 2R [R cos ∆θ − L1 cos (i1 + ∆θ)]

L2
1 = R2 + X2 + Y 2 − 2R [R− L1 cos i1]

The calculus of the difference of the two previous equations leads to the solution of the
following second order equation :

(∆L1)
2 + 2L1∆L1 − 2R [R (1− cos ∆θ) + L1 (cos (i1 + ∆θ)− cos i1)] = 0

The root which is of interest is the one which tends to zero as ∆θ tends to zero :

∆L1(∆(θ)) = −L1 + sgn(L1)L1

√
1 +

2R

L1

(cos (i1 + ∆θ)− cos i1) +
2R2

L2
1

(1− cos ∆θ)

(16)
This is the expression of the traveltime difference for the incident medium. For the other

term, we need to calculate the intersection of the two extremal rays of the outgoing beam. The
directions of these two rays is connected to the angle of incidence i2 in the following way :
α = θ + i2 α′ = θ + ∆θ + i′2.

After some straightforward calculations, we obtain :

t = 2R sin

(
∆θ

2

)
cos
(

∆θ
2

+ i′2
)

sin (i2 − i′2 −∆θ)

t′ = 2R sin

(
∆θ

2

)
cos
(

∆θ
2

+ i2
)

sin (i2 − i′2 −∆θ)

where t and t′ represent the distance between I and J, and between I′ and J. J being the
intersection point of the two rays. The second term of the traveltime difference is :

t− t′ =
4R sin
(

∆θ
2

)
sin (i2 − i′2 −∆θ)

sin

(
∆θ + i2 + i′2

2

)
sin

(
i2 − i′2

2

)
And finally, we have :

∆T (∆θ) =
∆L1

V1

+
t′ − t

V2

(17)

If ∆T (∆θ) < ε then J can be the new point source for the outgoing beam. This process
can be iterated. Therefore, beam decomposition is equivalent to sample the caustic or approxi-
mating the wavefront with circle arcs.
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Figure 2: Beam decomposition

§3. Beam decomposition

In the previous section, we express the traveltime difference between two point sources as a
function of ∆θ the variation of angle along a circle arc. It corresponds to the error we can
commit but this error must be controlled and less to a fixed value. As a consequence, we need
to solve the following equation :

∆T (∆θ) = ε (18)

As seen previously, this equation may have a solution or not depending on the configuration
( see section 2.2.4 ). For this reason, we chose to use a particular method to solve equation (18)
because conventional methods have difficulties in such a situation. It is based on winding
number and has been used with success in other context [1, 2]. Its main advantage is that it
determines in a first step if there is or not a solution to the equation that is to be solved. In
addition to all the advantages of this method, it avoids to take into consideration all particular
cases where this equation has no solution.

3.1. Principles of the technique

This section closely follows the article published by Davies [3] and is just a summary of the
basic principles. For a more complete analysis of the method the reader may refer to the original
paper.

Consider f(z), an analytic function over a region in the complex plane except for nq poles,
ϕ an analytic function and C a closed contour on which f has no zeros or poles, then the
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winding number integral is defined by :

1

2πi

∫
C

f ′(z)

f(z)
ϕ(z)dz =

p∑
k=1

nkϕ(ak)−
q∑

l=1

nlϕ(bl)

where ak et bl are the zeros and poles of f inside the contour C with the multiplicity or-
ders nk and nl. This result also called the argument principle is a consequence of the residue
theorem.

Let suppose that f has no poles inside C, that all the zeros are simple and take as function
ϕ the following function : ϕ(z) = zn. Under this hypothesis, the winding number integral will
lead to the following relation :

Sn =
1

2πi

∫
C

zn f ′(z)

f(z)
dz =

N∑
k=1

an
k

This means that the latter equation provides the knowledge of the number of zeros, the sum
of the roots, the sum of the squares of the roots and etc... It is then possible to use Newton’s
relation to determine the coefficients of the polynomial which have these roots. The problem
of finding the zeros of function f is then reduced to the canonical problem of finding the roots
of a polynomial which can be solved by standard techniques.

PN =
N∏

j=1

(z − aj) =
N∑

j=0

Ajz
N−j

with the Aj solutions of the following system :⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
S1 + A1 = 0
S2 + A1S1 + 2A2 = 0
· · ·
· · ·
Sn + A1Sn−1 + · · ·+ An−1S1 + nAn = 0

3.2. Application of beam decomposition

The previous method may be applied to equation (18) with circles as contours in the complex
plane but one must take care of the square root function of equation (16). This is done by first
determining the branch point associated to the square root function and then defining the radius
of the circle such that the branch point is outside the contour. In this way, the winding number
integral method can be used to perform the beam decomposition of SBRT.

§4. Examples

Two examples of the decomposition of a beam are presented. The aperture of the beam is only
limited by the bounds of the model. In figure 3, the case of the reflection of a beam at a circular
interface is considered. It can be seen that the enveloppe of the outgoing rays is the caustic.

The case of the transmission is presented in figure 4. In this configuration, the aperture of
the beam is limited because of the existence of a critical angle.
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Figure 3: Decomposition of a reflected beam

Figure 4: Decomposition of a transmitted beam
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