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THEORETICAL ASPECTS OF WAVE

PROPAGATION FOR BIOT’S

CONSOLIDATION PROBLEM

H. Barucq, M. Madaune-Tort and P. Saint-Macary

Abstract. We consider a coupled system of mixed hyperbolic-parabolic type which de-
scribes the Biot consolidation model in poro-elasticity as well as a coupled quasi-static
problem in thermoelasticity. In this work, we intend to develop the existence-uniqueness
theory for the multi-dimensional systems in the linear case using classical functional ar-
guments in the Sobolev background. For the consolidation model, our approach involves
Galerkin approximations to establish the existence of a solution to the problem while we
prove that the thermo-elastic and the quasi-static systems are limit cases of the consolida-
tion model. The treatment of the uniqueness is based on an energy inequality even if, in
the quasi-static system, it requires some adjustments because of a lack of regularity.
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§1. Introduction

The Biot consolidation model in poro-elasticity in which we are interested is the following:⎧⎪⎨⎪⎩ ρ
∂2u

∂t2
−-(λ∗ ∂

∂t
div u)−-((λ + µ)div u)− div(µ-u) + α-p = f(t,x)

c0
∂p

∂t
+ α div

∂u

∂t
− div(k-p) = h(t,x),

(1)

where the physical parameters ρ and λ∗ may be equal to zero.
This coupled mixed hyperbolic-parabolic system can describe the phenomena arising when a
soil is submitted to a load (in particular the consolidation effects) as well as the ultrasonic prop-
agation in fluid-saturated porous media like cancellous bone. The displacement vector field of
the system, denoted by u, satisfies the conservation of momentum while the fluid pressure p
satisfies a diffusion equation. K. Terzaghi was the first in interesting in the consolidation phe-
nomena arising in porous media under a load [18]. He showed the similarities between this
phenomena and the exit of a flow out of a porous media, that contributed to model fluid flows
in saturated deformable porous media as a coupled flow-deformation process. Later, M. A.
Biot studied these problems assuming that the continuum mechanics laws are applicable. He
developed thus the now classical theory of poro-elasticity and proved that a linear theory of
consolidation could be established by using the Darcy law for laminar flows combined with the
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momentum balance equations with Hooke law for elastic deformations [4, 5, 6, 7]. His results
were justified a posteriori by homogenization methods [1, 8, 13]. Indeed, a porous medium
consists in connected pores that are fluid-filled in a solid medium. We can then consider the
number of heterogeneities and, if the ratio between this number and the wavelength is smaller
than one, we can involve a homogenization process to study wave propagation phenomena.
Numerous works have followed the pioneering ones of Terzaghi and Biot. The coupled ther-
moelastic problem which deals with λ∗ = 0 in the first equation of (1) was studied from a
theoretical point of view by C. M. Dafermos [9]. In this paper, he constructs strong solutions
to the thermoelastic problem which describes the flow of heat trough an elastic structure. An-
other approach was used by R. E. Showalter and his coworkers in several papers [14, 15, 16]
constructing weak solutions using the linear semi-group theory in Hilbert spaces. He began by
the study of the degenerate quasi-static case (ρ = λ∗ = 0 in (1)) [14] before consider the case
of composite deformable porous media described by a system of the same type as (1) which
involves two pressures solutions to diffusion processes coupled by a distributed exchange term
[15]. At last, the case of visco-plastic media was tackled in [16]. Herein, for several space
dimensions, we have chosen to deal with the full dynamic system (1) describing the most com-
plete phenomenon of consolidation including secondary one which is sometimes neglected.
The study of mono-dimensional open sets is already done in [2]. Moreover, the parameters,
considered here as constants, can be functions of x: ρ(x), λ∗(x), λ(x), µ(x), c0(x) and k(x).
Providing some technical adjustments, the study of (1) is developed in [3] for variable parame-
ters.
As far as the constants of the system are concerned, ρ > 0 is the density of the porous and
permeable medium Ω; λ∗ > 0 is a physical parameter arising in connection with secondary
consolidation effects; the positive coefficients λ and µ respectively denote the dilatation and
shear modulus of elasticity, the so-called Lamé constants; α > 0 is the Biot-Willis constant
that accounts for the pressure-deformation coupling; c0 > 0 is the combined porosity of the
medium and compressibility of the fluid; k > 0 is the hydraulic conductivity and it contains
both the permeability of the medium and the viscosity of the fluid.
We associate to (1) the following initial conditions:

(u(0,x), p(0,x)) = (u0(x), p0(x)), (2)

and when ρ > 0

∂tu(0,x) = u1(x) (3)

with boundary conditions we will precise later.
In this paper, we will consider the study of the model when ρ > 0 in Section 2, including in
this case the vanishing of the constant λ∗, and we develop the case ρ = 0 in Section 3.

§2. The case ρ > 0

In this section, we will prove the existence and the uniqueness of a solution to the Biot consoli-
dation model (ρ and λ∗ > 0) and to the thermoelastic case (ρ > 0 and λ∗ = 0) using a Galerkin
approximation method for the first problem and a regularization technique for the second one.
As far as the proof of the uniqueness is concerned, it involves Ladyzenskaja’s test-functions.
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2.1. Existence for The Biot Consolidation Model

In this subsection, we study the most complete model of consolidation. As said before, we
denote the porous medium by Ω whose boundary Γ is lipschitzian. We also consider two
distinct partitions of the boundary in complementary parts: Γ1, Γc

1 and Γ2, Γc
2. We associate to

(1) the following boundary conditions:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u = 0 sur Γ1 × [0, T ]

λ∗∂tdivu ni + (λ + µ)div u ni + µ∇ui · n− αpni +
n∑

j=1

Aijuj = 0 sur Γc
1 × [0, T ]

p = 0 sur Γ2 × [0, T ]
k∇p · n + Bp = 0 sur Γc

2 × [0, T ],

(4)

where the elasticity modulus A and the pressure modulus B are respectively a positive definite
symmetric n × n matrix and a positive number. It states that the body is rigidly clamped
on Γ1 × [0, T ] and there is no pressure due to the fluid on Γ2 × [0, T ] while it is elastically
clamped on Γc

1 × [0, T ] and it undergoes a pressure on Γc
2 × [0, T ]. We define the spaces

V = {v ∈ H1(Ω) such that v = 0 on Γ1} and Ṽ = {q ∈ H1(Ω) such that q = 0 on Γ2} which
are Hilbert spaces once equipped with the usual semi-norm. We associate to (1) the initial
conditions (2) and (3) with u0 ∈ V, u1 ∈ L2(Ω), p0 ∈ L2(Ω).
We call solution to the problem described by {(1), (2), (3), (4)} any pair (u, p) which satisfies
the following variational formulation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find (u, p) ∈ L∞(0, T ;V)× L2(0, T ; Ṽ ) such that
∂tu ∈ L2(0, T ; H(div, Ω)), ∂2

t u ∈ L2(0, T ;V
′
), ∂tp ∈ L2(0, T ; Ṽ

′
),

verifying for a.e. t ∈]0, T [, ∀(v, q) ∈ V × Ṽ :

ρ < ∂2
t u,v >V′ ,V +λ∗

∫
Ω

div∂tu divvdx + (λ + µ)

∫
Ω

divu divv dx

+µ

∫
Ω

∇u⊗∇vdx− α

∫
Ω

p divvdx +

∫
Γc

1

Au⊗ vdσ =

∫
Ω

f · vdx,

c0 < ∂tp, q >Ṽ ′ ,Ṽ +α

∫
Ω

q div∂tudx + k

∫
Ω

∇p · ∇qdx + B

∫
Γc

2

pqdσ =

∫
Ω

hqdx,

(u(0,x), p(0,x)) = (u0(x), p0(x)), ∂tu(0,x) = u1(x),

(5)

and we will prove the:

Theorem 1. Under the hypotheses u0 ∈ V, p0 ∈ L2(Ω), u1 ∈ L2(Ω), f ∈ L2(0, T ;L2(Ω))
and h ∈ L2(0, T ; L2(Ω)), Problem (5) admits at least a solution (u, p).

Proof. To prove the existence of a solution to (5), we proceed to a Faedo-Galerkin approxima-
tion. Indeed, we intend to construct a solution to (5) as the limit of a sequence of approximate
regular solutions denoted by (um, pm)m∈N∗ . Let (wj)j∈N∗ and (χj)j∈N∗ respectively be a ba-
sis of V and Ṽ . Then, we set (um, pm) in Vm × Ṽm where Vm = Span{w1, . . . ,wm} and
Ṽm = Span{χ1, . . . , χm}.
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(um, pm)m∈N∗ satisfies the discrete formulation: ∀m ∈ N∗, ∀j ∈ N∗, 1 ≤ j ≤ m⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ρ

∫
Ω

∂2
t um ·wjdx + λ∗

∫
Ω

div∂tumdivwjdx + (λ + µ)

∫
Ω

divumdivwjdx

+µ

∫
Ω

∇um ⊗∇wjdx− α

∫
Ω

pmdivwjdx +

∫
Γc

1

Aum ⊗wjdσ =

∫
Ω

f ·wjdx,

c0

∫
Ω

∂tpmχjdx + α

∫
Ω

χjdiv∂tumdx + k

∫
Ω

∇pm · ∇χjdx + B

∫
Γc

2

pmχjdσ =

∫
Ω

hχjdx

(6)
with (um(0), pm(0)) = (u0m, p0m) → (u0, p0) in V × L2(Ω) and ∂tum(0) = u1m → u1 in
L2(Ω). According to the theory of linear differential equations, there exists a single solution
(um, pm)m∈N∗ to this approximate problem in H2(0, T ;V)×H1(0, T ; Ṽ ). Next, it is a matter
to derive an a priori estimate to prove that (um, pm)m∈N∗ is bounded in a suitable functional
framework which allows us to extract a subsequence of (um, pm)m∈N∗ that converges to (u, p)
solution to (5).
We multiply the first equation of (6) by u′

jm(t) and the second one by pjm(t). Then, we add
the resulting equalities and we integrate them on (0, t) for any 0 ≤ t ≤ T and we sum each
term from j = 1 to j = m. Using hypotheses on the initial conditions, the data and Cauchy-
Schwarz, Young and Poincaré inequalities and Gronwall lemma, we obtain that there exists a
constant κ such that: for each m ∈ N∗,

||um||L∞(0,T ;V), ||∂tum||L∞(0,T ;L2(Ω)), ||div∂tum||L2(0,T ;L2(Ω)), ||pm||L∞(0,T ;L2(Ω)), ||pm||L2(0,T ;Ṽ ) ≤ κ.

Then, only to extract a subsequence later, we get um → u in L∞(0, T ;V) weak *, ∂tum →
∂tu in L∞(0, T ;L2(Ω)) weak *, div∂tum → div∂tu in L2(0, T ; L2(Ω)) weakly, pm → p
in L∞(0, T ; L2(Ω)) weak * and in L2(0, T ; Ṽ ) weakly. We can then pass to the limit in (6)
when m tends to infinity and using the properties of the basis (wj)j∈N∗ and (χj)j∈N∗ and the
same kind of techniques as [10] page 623, we show that the pair (u, p) satisfies the variational
equations in (5). The proof of Theorem 1 is achieved checking that (u, p) fits into the initial
conditions at t = 0. According to the previous a priori estimate, (um)m∈N∗ is bounded in
W (0, T ;V,L2(Ω)). Using the continuous imbedding of this space into C0([0, T ];L2(Ω)), we
show that u(0, .) = u0(.). To show that ∂tu(0, .) = u1, and p(0, .) = p0(.), we multiply
Equations (5) written with v = wj and q = χj and Equations (6) by a function ψ belonging to
C1([0, T ]) such that ψ(T ) = 0.

2.2. Existence for the Thermo-Elastic Case

This subsection deals with the particular case when λ∗ = 0 in System (1). We neglect the
secondary consolidation term taking λ∗ = 0 in the first equation. In this case, we are interested
in the thermo-elastic model studied by C. M. Dafermos as recalled in Section 1. We consider
the system with the initial conditions (2), (3) and the boundary conditions (4) where now λ∗ = 0
which become:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u = 0 on Γ1 × [0, T ]

(λ + µ)div u ni + µ∇ui · n− αpni +
n∑

j=1

Aijuj = 0 on Γc
1 × [0, T ]

p = 0 on Γ2 × [0, T ]
k∇p · n + Bp = 0 on Γc

2 × [0, T ].

(7)
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We associate to this problem the following weak formulation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find (u, p) ∈ L∞(0, T ;V)× L2(0, T ; Ṽ ) such that
∂tu ∈ L∞(0, T ;L2(Ω)), ∂2

t u ∈ L2(0, T ;V
′
), ∂t(c0p + αdivu) ∈ L2(0, T ; Ṽ

′
),

verifying for a.e t ∈]0, T [, ∀(v, q) ∈ V × Ṽ :

ρ < ∂2
t u,v >V′ ,V +(λ + µ)

∫
Ω

divu divvdx + µ

∫
Ω

∇u⊗∇vdx

−α

∫
Ω

p divvdx +

∫
Γc

1

Au⊗ vdσ =

∫
Ω

f · vdx,

< ∂t(c0p + αdivu), q >Ṽ ′ ,Ṽ +k

∫
Ω

∇p · ∇qdx + B

∫
Γc

2

pqdσ =

∫
Ω

hqdx,

(u(0,x), p(0,x)) = (u0(x), p0(x)), ∂tu(0,x) = u1(x)

(8)

and we will prove the:

Theorem 2. Under the hypotheses u0 ∈ V, p0 ∈ L2(Ω), u1 ∈ L2(Ω), f ∈ L2(0, T ;L2(Ω))
and h ∈ L2(0, T ; L2(Ω)), Problem (8) admits at least a solution (u, p).

Proof. We use a regularization of Formulation (8): for all ε > 0, we consider the variational
formulation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find (uε, pε) ∈ L∞(0, T ;V)× L2(0, T ; Ṽ ) such that
∂tuε ∈ L2(0, T ; H(div, Ω)), ∂2

t uε ∈ L2(0, T ;V
′
), ∂tpε ∈ L2(0, T ; Ṽ

′
),

verifying for a.e. t ∈]0, T [, ∀(v, q) ∈ V × Ṽ :

ρ < ∂2
t uε,v >V′ ,V +ε

∫
Ω

div∂tuε divvdx + (λ + µ)

∫
Ω

divuε divv dx

+µ

∫
Ω

∇uε ⊗∇vdx− α

∫
Ω

pε divvdx +

∫
Γc

1

Auε ⊗ vdσ =

∫
Ω

f · vdx,

c0 < ∂tpε, q >Ṽ ′ ,Ṽ +α

∫
Ω

q div∂tuεdx + k

∫
Ω

∇pε · ∇qdx + B

∫
Γc

2

pεqdσ =

∫
Ω

hqdx,

(uε(0,x), pε(0,x)) = (u0(x), p0(x)), ∂tuε(0,x) = u1(x).
(9)

According to Subsection 2.1, we are ensured that Formulation (9) admits a single solution
(uε, pε) for each ε > 0. We will show that we can construct a solution to (8) as the limit of the
sequence (uε, pε)ε>0 when ε tends to zero.
First, using the calculations developed in the proof of Theorem 1, we show that (uε, pε)ε>0

is bounded in W (0, T ;V,L2(Ω)) × (L∞(0, T ; L2(Ω)) ∩ L2(0, T ; Ṽ )) and
√

ε(div∂tuε)ε>0 is
bounded in L2(0, T ; L2(Ω)). Moreover, using these results and the equations of (9), we also
prove that (∂2

t uε)ε>0 and (∂t(c0pε + αdiv∂tuε))ε>0 are respectively bounded in L2(0, T ;V′)
and L2(0, T ; Ṽ ′). Hence, we deduce that there exists a subsequence extracted from (uε, pε)ε>0

also denoted (uε, pε)ε>0 for the sake of conciseness and which satisfies uε → u in L∞(0, T ;V)
weak *, εdiv∂tuε → 0 in L2(0, T ; L2(Ω)) weak, ∂2

t uε → ∂2
t u in L2(0, T ;V′) weak, pε → p

in L∞(0, T ; L2(Ω)) weak * and in L2(0, T ; Ṽ ) weak, ∂t(c0pε + αdivuε) → ∂t(c0p + αdivu)
in L2(0, T ; Ṽ ′). This pair (u, p) defined as the limit state to (uε, pε)ε>0 when ε → 0 is then
solution to the variational equations of (8).
To achieve the proof of the existence of a solution to (8) only consists in checking that the pair
(u, p) at time t = 0 fits into the given initial data (u0, p0) and u1. Using the results of the
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a priori estimate obtained, we know that (uε)ε>0 and (∂tuε)ε>0 are respectively bounded in
W (0, T ;V,L2(Ω)) and W (0, T ;L2(Ω),V′). Using the fact that W (0, T ;V,L2(Ω)), W (0, T ;
L2(Ω),V′) ↪→ C0([0, T ];L2(Ω)), we are able as in Subsection 2.1 to conclude that u(0,x) =
u0(x) and ∂tu(0,x) = u1(x) in Ω.
Moreover, we know that (c0pε + αdivuε)ε>0 is bounded in W (0, T ; L2(Ω), Ṽ ′) ↪→ C0([0, T ];
L2(Ω)) and using the information we have on (uε)ε>0, we can conclude that p(0, .) = p0(.) in
D′(Ω) that achieve the proof of the existence of a solution to Problem (8).

2.3. Uniqueness

Now we are interested in the question of the uniqueness for Problems (5) and (8). As these
problems only differ from the term of secondary consolidation, it is sufficient to develop the
proof of the uniqueness of a solution to (5). Moreover as this problem is linear, it amounts to
verify that the homogeneous variational problem associated to (5) (i.e. f ≡ 0, h ≡ 0, u0 ≡ 0,
u1 ≡ 0, p ≡ 0) only admits the trivial solution (u, p) = (0, 0). As the first equation is second
order in time hyperbolic type, we should take v = ∂tu as test-function in the first equation to
obtain an energy inequality. But, because of a lack of regularity, we cannot use the natural pair
(∂tu, p) to eliminate the coupling terms. That is why we consider Ladyzenskaja’s test-functions
[11, 12] to compensate for this difficulty. Let s be in ]0, T [ and let consider the pair (ϕ1, ϕ2)
defined by:

ϕ1(t,x) =

⎧⎨⎩ −
∫ s

t

u(σ,x)dσ

0
and ϕ2(t,x) =

⎧⎨⎩ −
∫ s

t

(∫ τ

0

p(σ,x)dσ

)
dτ if t ≤ s,

0 if t ≥ s.

We also define ϕ̃1(t,x) =

∫ t

0

u(σ,x)dσ and ϕ̃2(t,x) =

∫ t

0

(∫ τ

0

p(σ,x)dσ

)
dτ .

The following properties are thus satisfied:{
ϕ1(t,x) = ϕ̃1(t,x)− ϕ̃1(s,x) ϕ1(0,x) =−ϕ̃1(s,x) ϕ1(s,x) =0

∂tϕ1(t,x) =u(t,x) ∂tϕ1(0,x) =0 ∂tϕ1(s,x) =u(s,x)
(10)

and:⎧⎪⎪⎨⎪⎪⎩
ϕ2(t,x) = ϕ̃2(t,x)− ϕ̃2(s,x) ϕ2(0,x) =−ϕ̃2(s,x) ϕ2(s,x) = 0

∂tϕ2(t,x) =

∫ t

0

p(σ,x)dσ ∂tϕ2(0,x) = 0 ∂tϕ2(s,x) =

∫ s

0

p(σ,x)dσ

∂2
t ϕ2(t,x) = p(t,x) ∂2

t ϕ2(0,x) = 0 ∂2
t ϕ2(s,x) = p(s,x).

(11)
Now, we consider the pair (ϕ1, ϕ2) as test-function in the homogeneous variational formulation
associated to (5). Next we integrate on (0, t) with respect to time. Using the properties (10)
and (11) and after some calculations, we obtain:

ρ

2
||u(s)||2L2(Ω) + λ∗

∫ s

0

∫
Ω

|divu|2dxdt +
λ + µ

2
||divϕ̃1(s)||2L2(Ω) +

µ

2
||∇ϕ̃1(s)||2L2(Ω)+

+ c0
2
||∂tϕ2(s)||2L2(Ω) +

1

2

∫
Γc

1

Aϕ̃1(s)⊗ ϕ̃1(s)dσ + k

∫ s

0

∫
Ω

|∇∂tϕ2|2dxdt+

+B
∫ s

0

∫
Γc

2
|∂tϕ2|2dσdt ≤ 0

which allows us to conclude that u(t,x) = p(t,x) = 0 and to expound the:
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Theorem 3. Under the hypotheses u0 ∈ V, p0 ∈ L2(Ω), u1 ∈ L2(Ω), f ∈ L2(0, T ;L2(Ω))
and h ∈ L2(0, T ; L2(Ω)), Problem (5) admits a single solution (u, p).

§3. The case ρ = 0: the Quasi-Static Model

In this part, we deal with the case when ρ = 0 and λ∗ > 0 in Formulation (1). This corresponds
to the quasi-static case which results from negligible inertia effects and describes the slow
deformations associated with consolidation and the associated seepage of the fluid. We consider
the homogeneous Dirichlet boundary conditions (u, p) = (0, 0) on Γ and we associate to this
problem the following variational formulation :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find (u, p) ∈ L∞(0, T ;H1
0(Ω))× L2(0, T ; H1

0 (Ω)) such that
div∂tu ∈ L2(0, T ; L2(Ω)), ∂tp ∈ L2(0, T ; H−1(Ω)),

verifying for a.e. t ∈]0, T [, ∀(v, q) ∈ H1
0(Ω)×H1

0 (Ω) :

λ∗
∫

Ω

div∂tu divvdx + (λ + µ)

∫
Ω

divu divv dx + µ

∫
Ω

∇u⊗∇vdx

−α

∫
Ω

p divvdx =

∫
Ω

f · vdx,

c0 < ∂tp, q >H−1(Ω),H1
0 (Ω) +α

∫
Ω

q div∂tudx + k

∫
Ω

∇p · ∇qdx =

∫
Ω

hqdx,

(u(0, x), p(0, x)) = (u0(x), p0(x)).

(12)

We define the space V = {v ∈ H1
0(Ω) such that divv = 0}⊥ and we establish the:

Theorem 4. Under the hypotheses (u0, p0) ∈ V × L2(Ω), f ∈ L2(0, T ; Rg(∇)) and h ∈
L2(0, T ; L2(Ω)), Problem (12) admits a single solution.

Proof. We use a regularization technique as in the proof of Theorem 2.
Let ε > 0 be a small parameter. We consider the variational problem as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find (uε, pε) ∈ L∞(0, T ;H1
0(Ω))× L2(0, T ; H1

0 (Ω)) such that

∂tuε ∈ L2(0, T ; H(div, Ω)), ∂2
t uε ∈ L2(0, T ;H−1(Ω)), ∂tpε ∈ L2(0, T ; H−1(Ω)),

verifying for a.e. t ∈]0, T [, ∀(v, q) ∈ H1
0(Ω)×H1

0 (Ω) :

ε < ∂2
t uε,v >H−1(Ω),H1

0(Ω) +λ∗
∫

Ω

div∂tuε divvdx + (λ + µ)

∫
Ω

divuε divv dx

+µ

∫
Ω

∇uε ⊗∇vdx− α

∫
Ω

pε divvdx =

∫
Ω

f · vdx,

c0 < ∂tpε, q >H−1(Ω),H1
0 (Ω) +α

∫
Ω

q div∂tuεdx + k

∫
Ω

∇pε · ∇qdx =

∫
Ω

hqdx,

(uε(0, x), pε(0, x)) = (u0(x), p0(x)), ∂tu(0, x) = u1(x)

(13)

where u1 is a given function in L2(Ω). We show as in Subsection 2.1 that the pair (uε, pε)ε>0

exists and is unique, for any value of ε > 0. We begin as usual deriving some a priori estimate.
We would like to take the pair (v, q) = (∂tuε, pε) as test-function in Formulation (13) and
to integrate on (0, t) with respect to time. But, because of a lack of regularity, it is not the
well-adapted test-functions pair. We consider τ > 0 and we take v = 1

τ
(uε(t + τ) − uε(t)).
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We integrate on (0, t) and we use an integration by parts formula on the first term of the first
equation. We get when τ tends to zero:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

[
ε

∫
Ω

|∂tuε|2(t)dx + (λ + µ)

∫
Ω

|divuε|2(t)dx + µ

∫
Ω

|∇uε|2(t)dx

+ c0

∫
Ω

|pε|2(t)dx

]
+ λ∗
∫ t

0

∫
Ω

|div∂tuε|2dxds + k

∫ t

0

∫
Ω

|∇pε|2dxds

=

∫ t

0

∫
Ω

f · ∂tuεdxds +

∫ t

0

∫
Ω

hpεdxds +
ε

2
||u1||2L2(Ω) +

λ + µ

2
||divu0||2L2(Ω)

+
µ

2
||∇u0||2L2(Ω) +

c0

2
||p0||2L2(Ω).

(14)

Taking hypotheses on initial data into account and using an integration by parts formula, the
right member of (14) varies up to and including:

κ−
∫ t

0

∫
Ω

∂tf · uεdxds +

∫
Ω

f(t) · uε(t)dx−
∫

Ω

f(0) · uε(0)dx +

∫ t

0

∫
Ω

hpεdxds.

Using Cauchy-Schwarz, Young and Poincaré inequalities, it modifies to:

κ +
µ

4

∫ t

0

∫
Ω

|∇uε|2dxds +
µ

4

∫
Ω

|∇uε|2(t)dx +
c0

2

∫ t

0

∫
Ω

|pε|2dxds.

We finally apply Gronwall lemma to get the estimate:⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2

[
ε

∫
Ω

|∂tuε|2(t)dx + (λ + µ)

∫
Ω

|divuε|2(t)dx +
µ

2

∫
Ω

|∇uε|2(t)dx

+ c0

∫
Ω

|pε|2(t)dx

]
+ λ∗
∫ t

0

∫
Ω

|div∂tuε|2dxds + k

∫ t

0

∫
Ω

|∇pε|2dxds ≤ κ.

Moreover, using this estimate and the second equation of (13), we prove that ∂tpε is bounded
in L2(0, T ; H−1(Ω)). According to these results, we deduce that there exists a subsequence ex-
tracted from (uε, pε)ε>0 also denoted by (uε, pε)ε>0 which satisfies uε → u in L∞(0, T ;H1

0(Ω))
weak *, div∂tuε → div∂tu in L2(0, T ; L2(Ω)) weakly, pε → p in L∞(0, T ; L2(Ω)) weak * and
in L2(0, T ; H1

0 (Ω)) weakly, ∂tpε → ∂tp in L2(0, T ; H−1(Ω)) weak. Hence, making ε converge
to zero, the pair (u, p) defined as the limit state to (uε, pε)ε>0 is solution to the variational equa-
tions of (12).
To achieve the proof of the existence of a solution to (12), we have to check that the pair (u, p)
fits into the initial conditions. According to the previous a priori estimates, we know that
(pε)ε>0 is bounded in W (0, T ; H1

0 (Ω), H−1(Ω)) ↪→ C0([0, T ]; L2(Ω)), property which allows
us to conclude that p(0, .) = p0(.) as in the previous subsections. Using the same reasoning with
(divuε)ε>0 which is bounded in W (0, T ; L2(Ω), L2(Ω)), we get that divu(0, .) = divu0(.).
To prove that, in fact, we have u(0, .) = u0(.), we use the isomorphism T which associates
to each v ∈ V its divergence into L2

0(Ω) which is the space of functions v in L2(Ω) such that∫
Ω

vdx = 0. Indeed, if w ∈ V is such that div w = divu0 then w = u0. That’s why we will
show that we can define u(0) in V i.e. that u(0) ∈ H1

0(Ω) and ∃q ∈ L2(Ω),−∆u(0) = ∇q
according to [17].
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For v in H1
0(Ω) such that divv = 0, the first equation of (12) becomes: for a.e. t ∈]0, T [,

µ
∫

Ω
∇u(t) ⊗ ∇vdx =

∫
Ω
f(t) · vdx. But f ∈ L2(0, T ; Rg(∇)) implies that there exists

q ∈ L2(Q) such that f = ∇q. Therefore, for a.e. t ∈ (0, T ),
∫

Ω
f(t) · vdx = 0 and u(t) ∈ V.

As T is an isomorphism, there exists α > 0 such that for a.e. t ∈]0, T [, ||u(t)||2
H1

0(Ω)
≤

α
∫

Ω
|divu(t)|2dx. For a.e. s, t ∈]0, T [, we get: ||u(t) − u(s)||2H1

0(Ω) ≤ α

∫
Ω

(div(u(t) −

u(s)))2dx ≤ α

∫
Ω

(divu(t)− divu(s))2dx.

But, according to the previous a priori estimates, we know that divu ∈ C0([0, T ]; L2(Ω))
and using the previous inequality, we can conclude that u ∈ C0([0, T ];H1

0(Ω)) and then that
u(0) ∈ H1

0(Ω). We then get u(0) ∈ V and as divu(0) = divu0 and T is an isomorphism, we
obtain that u(0, .) = u0(.) that achieves the proof of the existence of a solution to (12).
The proof of Theorem 4 is achieved once proved the uniqueness of the solution. To do this,
we also use Ladyzenskaja’s test-functions like in Subsection 2.3. Indeed, as the first equation
is nothing more second order hyperbolic type, we can take v = u as test-function in the first
equation of the homogeneous formulation associated to (12). But, to be able to eliminate the
coupling terms, we cannot choose q = p in the second equation. That is why we take q = ϕ
defined by

ϕ(t, x) =

⎧⎨⎩
∫ s

t

p(σ, x)dσ if t ≤ s,

0 if t ≥ s

which satisfies the same kind of properties as (10). With this pair of test-function, proceeding as
in Subsection 2.3, we obtain an equality which allows us to conclude that the single solution of
the homogeneous problem associated to (12) is (0, 0) that proves the uniqueness of the solution
to (12).
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