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A TRACING WAVES METHOD FOR THE

CONSTRUCTION OF SEISMIC

PROPAGATORS

Hélène Barucq, Bertrand Duquet and Frank Prat

Abstract. This work is concerned with a micro-local method for solving the direct prob-
lem of acoustic waves scattering in a complex medium. Pseudo-differential theory is used
to decompose the scattering problem into a one-way model which accounts for the reflec-
tions and transmissions due to the variations of the medium velocity. Then, the multiple
reflections can be taken into account and they can be computed separately. This is very
interesting in case of imaging processes because the multiple reflections play the role of
scrambling the results and a separate computation of multiples is not possible when using
finite difference or finite element methods. The numerical solution involves FFTs and the
resulting computational burden is lower than the one required by finite difference or finite
element techniques.
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§1. Introduction

The numerical solution of a scattering phenomenon may involve different approaches. One of
them consists of full-wave methods that are based upon the solution of the exact wave equation
by using finite difference or finite element techniques. Any characteristic of the propagation
is considered but the related numerical process requires a high computer memory and a high
computational burden also [6]. Another solving approach is defined by asymptotic methods.
Some of them consists in solving a parabolic approximation of the wave equation [2, 3]. The
approximate wave equation is given by a pair of uncoupled equations which describe the wave
propagation along an axis. A first paper [2] was concerned with the derivation of the parabolic
equations as a high-frequency approximation of the one-dimensional wave equation. This is
well-known as the WKB method. Later, Corones [3] improved the modeling by introducing
a Bremmer series that allows to account for the reflection and transmission, as opposed to the
first modeling [2]. Other asymptotic methods are based upon the tracing ray theory (see [7]
and its references). It is also a high-frequency approach which permits a fast computation
of the seismograms, as opposed to a full-wave method. However, the accuracy of ray methods
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decreases in singular regions and high-frequency methods are unsuitable for the wave scattering
by strongly heterogeneous objects.

Recently, De Hoop and its co-workers [4, 5] have developed a new method for solving the
wave equation. It can be considered as a hybrid method between full-wave and high-frequency
methods. The method is based on a system which is derived from the exact wave equation
by proceeding to the micro-local analysis of the wave front set in a selected direction which
can be the depth for seismic wave modelling but also the normal direction for the scattering
by an object. By analogy with the formalism in ray theory, the approach is called the Tracing
Wave Methods. Applying the tracing wave theory modifies the wave equation to a system of
uncoupled equations which involve the out-going and in-going Dirichlet-to-Neumann operators
and coupling terms which account for the reflection and transmission. Then, the new system
shows off the main role played by the square-root of the Helmholtz operator. It can be proved
that the resulting model generalizes the system proposed in [3]: the parabolic equations coupled
with a Bremmer series is an approximation of the tracing wave method in case of small lateral
variations of the medium velocity [1]. Besides a lower computational burden as opposed to a
full-wave method, the tracing wave method provides a numerical way to separate the multiple
reflections which is of great importance for an accurate imaging of the medium by using wave
propagation.

In this paper, we intend to apply the micro-local method for the computation of seismo-
grams in complex structures. This provides new and more precise results as compared to [11]
where a numerical study was developed in terms of snapshots only. The work is divided into the
following parts. We derive the one-way model by using pseudo-differential techniques. Then,
we describe the numerical method and focus on its main difficulties. At last, we conclude by
a numerical experiment which shows the accuracy of the method as far as the kinematic is
concerned but its weak spots also.

§2. Setting of the mathematical model

The propagation of acoustic waves is usually related to the wave equation which can be written
as a first order hyperbolic system as follows:{

∇p + ∂t (ρv) = f
∂t (κ p) + div v = q.

(1)

The system consists of two coupled equations involving the scalar acoustic pressure p and the
particle velocity v = t (vx, vy, vz). The notation x = t (x, y, z) defines a generic point in
R3, ∇ is the gradient operator defined for any regular function ϕ by ∇ϕ =t (∂xϕ, ∂yϕ, ∂zϕ)
while the divergence div is the scalar operator given by div Φ = ∂xΦx + ∂yΦy + ∂zΦz. As
usual, ∂t denotes the time derivative. The physical parameters are the volume density ρ and the
compressibility κ and the velocity of the medium is given by the relation c (x) =

√
ρκ. In this

paper, we assume that ρ is constant. The vector f is the volume source density, the scalar q is
the volume source density of injection rate and both are data for the system. The propagation
medium is given as the half-space {z ≥ 0} and z > 0 describes the underground.

Assume that initial data are given at the surface {z = 0}. One way to solve system (1)
consists in selecting the depth variable z as the preferred direction and to express the motion
of the wave along the axis z > 0. Such an approach was formerly suggested in [2, 3] but in the
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simplest case of one-dimensional stratified media which does not require the use of pseudo-
differential techniques. The complexity of the propagation medium prohibits from using the
same arguments than in the previous papers and the motion in the z-direction can be written
only by using the formalism of pseudo-differential operators. To transform (1) requires first
to eliminate the time derivative. This is achieved easily by using a Fourier-Laplace transform
with dual variable ω. Then system (1) modifies to:⎧⎪⎨⎪⎩

∇t p̂ + iω (ρv̂)′ =
(
f̂
)′

,

∂zp̂ + iω (ρv̂z) = f̂z,
iωκ p̂ + div (v̂)′ + ∂zv̂z = q̂,

where ∇t p̂ =t (∂xp̂, ∂yp̂) , v̂′ =t (v̂x, v̂y) and f̂ ′ =t
(
f̂x, f̂y

)
. As usual, ϕ̂ denotes the Fourier

transform of ϕ. Here, it is the Fourier transform with respect to the time t > 0, the causal-
ity principle being satisfied by the wave solution. The first equation allows to eliminate the
tangential unknown v̂′ =t (v̂x, v̂y) in the third equation and we get a system of the form:

(Dz + L)U = F (2)

where U =t (p̂, v̂z) , Dz = ∂zI2 and I2 denotes the identity. The operator L is defined by:

L =

(
0 iωρ
iωκ + i

ωρ
div∇t 0

)

and the source F is given by F =t

(
f̂z, q̂ −

1

iωρ
div
(
f̂
)′)

. Factorizing by iω, operator L can

be written as L = iωL� where L� = L�

(
x

′
,
1

ω
∂x′

)
. According to the theory developed by

Hörmander [8], the operator L� is a pseudo-differential operator in OPS1 depending on the
parameter 1/ω and if L� denotes its symbol, we have the representation: for any test-function
ϕ, 〈

L�, ϕ
〉

=
1

(2π)2

∫ ∫
L�

(
x

′
,
k

′

ω

)
ϕ
(
s
′
)

e−i(x′−s′).k′
ds′dk′

where s′ =t (sx, sy) ∈ R2 and k′ =t (kx, ky) is the dual variable to x
′

such that the symbol of
∇t is ik

′
. The symbol L� is then defined by:

L� =

(
0 ρ

κ− |k′|2
ω2ρ

0

)
,

with |k′|2 = k2
x + k2

y.
The solution of (2) gives a description of the motion of the wave U along the depth z. The

formalism of pseudo-differential operators allows to extend a classical approach for solving
differential systems with constant coefficients which consists in making diagonal the matrix
L. In case of pseudo-differential operators (or differential operators with variable coefficients),
Taylor [12] has developed a diagonalization process for strictly hyperbolic systems and herein,
we follow his approach.



442 Hélène Barucq, Bertrand Duquet and Frank Prat

According to system (2), L describes the variations of U along the axis z. Since L is
a strictly first-order hyperbolic operator, its symbol L (which equates the principal symbol)
admits two single eigenvalues. One describes the behavior of the wave front set along the
down-going bicharacteristic while the other is related to the up-going bicharacteristic. With
regard to the propagation, making L allows to decompose U into a downward and a upward

part. The eigenvalues of L� are given by ±γ with γ =

(
1

c2 (x)
− |k

′|2
ω2

)1/2

. The frequency k′

belongs to R2 which is divided into three regions. The first region is

{
|k′|2 <

ω2

c2 (x)

}
where

the eigenvalues of L are imaginary. It is usually called the hyperbolic region and it corresponds
to the propagation modes. In that case, we will call γ the down-going eigenvalue while −γ is

the up-going one. The second region is

{
|k′|2 >

ω2

c2 (x)

}
, the so-called elliptic region. In this

frequency zone, the expression of the eigenvalues involves the principal determination of the
square-root in the complex plane and then, the eigenvalues of L are real. The eigenvalue γ is
now related to an evanescent mode in this region while the other eigenvalue−γ is rather associ-
ated to a blowing mode (increasing as ω increases). In this region, no propagation phenomenon

occurs. At last, the region

{
|k′|2 =

ω2

c2 (x)

}
is the region of grazing rays in which the problem

degenerates into a double eigenvalue one and the system is no more strictly hyperbolic. As in
the previous case, there is no propagation of waves.

Next, we can define a diagonal operator Λ which is a pseudo-differential operator in OPS1

whose symbol is the matrix

(
γ 0
0 −γ

)
. For any fixed z, this operator is the Dirichlet-to-

Neumann operator which is frequently associated to the wave equation in the context of scat-
tering problems. Operator Λ and operator L� are linked by the relation L� = PΛP−1 where P
stands for the pseudo-differential operator with symbol equal to the matrix P constructed from
the eigenvectors of L�. It can be chosen in the form:

P =

(
ρ ρ
−i (γ/ω) i (γ/ω)

)
and then, P ∈ OPS0. Its inverse P−1 exists if P−1 exists and it is a pseudo-differential operator
of order 0 also whose principal symbol is P−1. Then, the previous decomposition of L onto
the eigenvectors basis allows to derive an auxiliary model, the so-called one-way model which
is developed in the next section.

§3. The one-way model

The diagonalization of L provides a direct way to describe the down-going and the up-going
motions of the acoustic wave U. This is achieved by changing the unknown such that (2) is
re-written as a diagonal system on the left and coupled terms on the right which describe the
reflection and transmission events. The new unknown V is expressed from U by the relation
V = PU which shows off V is the projection of U onto the generalized eigenspaces of L. That
means, according to the definition of Λ, the first component of V represents the downward part
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of U along the axis z > 0 while the second component of V is the upward part of the wave
field. By plugging V into (2), we get the new system :

(Dz + iωΛ)V = −P−1 (∂zP )V + P−1F. (3)

The left side of (3) consists of two uncoupled equations, the so-called one-way system which
involves the diagonal operator Λ only. The right side is composed of the data and of a coupling
term which only depends on P and describes the reflection and the transmission.

Remark. We can observe that if P does not depend on z, the coupling term vanishes and
(3) generalizes the WKBJ model that was used in [2] in case of homogeneous one-dimensional
stratified media. Moreover, since we have chosen P such that P ∈ OPS0, the changing of
unknown V = PU preserves the regularity of U.

To define the inverse of P , we have to compute its symbol. Note that according to the theory
of pseudo-differential operators, P−1 is well-defined because P−1 exists with:

P−1 =
1

2

(
ρ−1 −iω/γ
ρ−1 iω/γ

)
.

Then, we propose to replace P−1 by the operator whose symbol is P−1 exactly. This amounts
to approximate the symbol of P−1 by its principal symbol. In the following, we keep the
notation P−1 but we do not consider the exact operator P−1. The reason is that the exact
symbol of P−1 is a series of matrices. The terms of any matrix are homogeneous symbols that
are combinations of the x

′
and k

′
-derivatives of γ−1. Hence, the exact symbol is not easy to

compute and we prefer to consider an approximation.
As far as the coupling terms are concerned, it is convenient to re-write them like:

−P−1 (∂zP ) =

(
T R
R T

)
where T denotes the transmission operator and R is the reflection one. Then, T and R have
symbols T andR which are signs unlike withR = 1

2
γ−1∂zγ.

§4. The down-going operator

In this section, we focus on the determination of the down-going eigenvalue and its inverse
since both these symbols play a main role in the computational method. Indeed, the main term
in the symbol of P is given by γ and since we have chosen to approximate the symbol of
P−1 by its principal symbol, we only have to determine γ−1. In order to limit the difficulty of
implementation and the computational costs, it is convenient to approximate the square-root γ
by some polynomial. In the context of wave propagation problems, it is quite usual to introduce
a background medium related to a velocity which only depends on the depth z. For any fixed
z, it can be defined by:

c0 (z) = min
x
′

c
(
x

′
, z
)

.
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Then, the wave equation set in the fictitious medium with velocity c0 (z) is related to the eigen-

value γ0

(
z,

k
′

ω

)
=

(
1

c2
0 (z)

− |k
′|2

ω2

)1/2

and we can re-write the down-going eigenvalue as:

γ

(
x

′
, z,

k
′

ω

)
= γ0

(
z,

k
′

ω

)√√√√√1− δ (x′ , z)(
γ0

(
z,

k
′

ω

))2 (4)

where δ
(
x

′
, z
)

=
1

c2
0 (z)

− 1

c2 (x′ , z)
is a parameter which accounts for the lateral variations of

velocity. The reference velocity has been chosen such that
δ
(
x
′
,z
)

⎛⎜⎝γ0

⎛⎜⎝z,
k

′

ω

⎞⎟⎠
⎞⎟⎠

2 is smaller than 1 and

then, the square root in (4) is approximated by the truncated Taylor expansion:

γ

(
x

′
, z,

k
′

ω

)
� γ0

(
z,

k
′

ω

)⎛⎜⎜⎜⎝1 +
m∑

j=1

aj

δj
(
x

′
, z
)(

γ0

(
z,

k
′

ω

))2j

⎞⎟⎟⎟⎠ . (5)

Formula (5) is of practical value quite easily since the variables x
′
and k

′
are separated. Hence,

as far as the numerical implementation of (5) is concerned, the storages of x
′
and k

′
are uncou-

pled which minimizes the memory storage and the related computational burden of the method
is improved.

As far as the integration of γ−1 is concerned, a difficulty arises from the fact that
1

c2 (x)
−

|k′|2
ω2

can vanish and, even if the inverse of the square-root is integrable near the origin, there

is a singularity from a numerical point of view. This is why we use a numerical artefact which

consists in avoiding the origin by integrating along a half-circle centered at
1

c2 (x)
and with

radius R. The numerical method is very sensitive to the choice of R. We refer to [9] for a
detailed discussion on the fitting of R. In this paper, we do not develop this question but we
illustrate it by numerical results.

§5. The propagators

The propagator G =

(
G+ 0
0 G−

)
is the diagonal operator defined by the pair G± which

are the inverse of (Dz ± Γ), providing Γ is the operator with symbol γ. Operator G+ de-
scribes just the propagation from the top of the medium to its bottom while G− is related to the
retro-propagation. Both these operator are involved for solving the one-way model as follows.
Assuming that G± are well-defined, (3) modifies to(

I + GP−1 (∂zP )
)
V = GP−1F, (6)
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where I stands for the identity in C2. The unknown V is then obtained by inverting I +
GP−1 (∂zP ) . This can be achieved because the solution operator is a perturbation of the iden-
tity I ∈ OPS0 by an operator in OPS−1. Moreover, the theory of pseudo-differential operators
ensures that the inverse operator is a series of the form:(
I + GP−1 (∂zP )

)−1
= I−GP−1 (∂zP )+

(
GP−1 (∂zP )

)2− ...+(−1)m (GP−1 (∂zP )
)m

+ ...

modulo a regularizing operator. This is what we call the Bremmer series, just as was formerly
introduced by Corones in [3]. From a numerical point of view, we use a truncated expansion.
The first term of the series (the zero-order one) is related to the source propagation. The next
term (the first-order one) describes the primary reflection and the (m+1)th gives the (m-1)th
multiple, m ≥ 2.

According to the semi-group theory, G± is characterized by its kernel K± and the Trotter
formula (see [10]). From a numerical point of view, we proceed to an approximation of the
kernel of G± which is based upon a discretization of the medium into twice sections of depth
∆z and the fist-order approximation is given by:

K±
(
x

′
, z, s′, sz

)
=

1

(2π)2

∫
e

iω
(
x
′−s

′)
.k

′
exp

(
±iωγ

(
x

′
,
z + sz

2
,
k

′

ω

)
∆z

)
dk

′
.

In order to speed up the integration of the kernel, whence the computation of the propagators,

we proceed to the approximation of exp
(
±iωγ
(
x

′
, z+sz

2
, k

′

ω

)
∆z
)

, providing ∆z is small.

But we have to correct the amplitude of the approximation since the exact symbol belongs to
the unit circle. Hence,

exp

(
±γ

(
x

′
,
z + sz

2
,
k

′

ω

)
∆z

)
� N

(
x

′
,
z + sz

2
,
k

′

ω

)(
1± iωγ

(
x

′
,
z + sz

2
,
k

′

ω

)
∆z

)

where N

(
x

′
,
z + sz

2
,
k

′

ω

)
is a normalization factor. Herein, if w = 1 + p + iq, (p, q) ∈ (R)2,

N(w) = exp(iq)

∣∣∣∣1 +
p

1 + iq

∣∣∣∣−1(
1 +

p

1 + iq

)
where | · | denotes the modulus in the complex plane. This amounts to approximate 1 + iq
by exp(iq) and to project the complex number on the unit circle dividing by the modulus of

1 +
p

1 + iq
.

§6. Numerical experiments

We illustrate the method by some two-dimensional tests. We consider the simplest case of
three homogeneous media separated by plane interfaces(δ = 0). The computational domain is
4.4 kilometers wide and 3 kilometers deep. The source point is located at x = 2200 meters.
The number of discretization points is equal to 440 and the receivers are located atxj = j∆x.
The source is a Gaussian. We use the finite difference software Twist ++ developed at the
Geoscience Research Center (Total, London) and the results are compared in a computational
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Figure 1: On the top left figure, Twist++ result; on the top right, GSP result; on the bottom
figure, the first multiple alone with GSP

window which is 1.5 kilometers wide. The ordinate gives the values of the time arrivals. On
Fig.1, the first left pattern represents the results obtained with Twist++ while the right pattern
is related to the tracing wave method. As far the kinematic is concerned, the results are in good
agreement. The third pattern at Fig.1 shows the first multiple which can be computed separately
by the tracing wave approach only.
The second test is based upon a velocity model (left Fig.2) which is related to a medium divided
into two regions by an interface with a slope which allows to account for the lateral variations
of the velocity (δ �= 0). The computational domain is a square with side equal to 4 kilometers.
The point source is located at x = 2000 meters and is equal to the second derivative of a time
gaussian centered at the origin. The number of discretization points along the horizontal axis
is equal to 400 and the receivers are located at each node xj = j∆x.

For this model, the seismic response can be computed analytically. As far as the kinematic
is concerned, the results are correct. Nevertheless, some spurious events occur. On the top of
the computational domain, we can observe some noisy events which interfere in the pattern like
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Figure 2: On the left figure, the velocity model as a function of (x1, x3) , on the right figure, the
arrival time (Y-axis) at the receivers (X-axis)

crosspieces. Their origin can be multiple. Indeed, we use a collection of FFTs which make the
signals periodic and create artificial sources. Moreover, the treatment of the singularity in the
grazing zone by a contour in the complex plane seems to cause artificial noise. Indeed, beyond
avoiding the singularity for γ−1, the frequencies go from the hyperbolic region to a region,
the so-called elliptic zone, which does not play a role for the propagation. Hence, in order to
eliminate the elliptic frequencies, we multiply the related solution by a decreasing exponential
and this can generate some noise into the numerical result. This numerical artefact is related
to the value of the reference velocity and then on the value of the contour radius R. The best
situation will be given when the reference velocity is quite close to the velocity. But this is
not an interesting situation since we intend to use the method when the lateral variations of the
velocity are high.

Actually, some ideas have been explored for the improvement of the numerical method. The
first consists in optimizing the computation of the reflection operator and it will be the subject
of a further work. The second deals with the computation of γ−1 and the use of the contour
for avoiding the grazing zone. At last, some investigations concern the normalization in the
propagator. Some numerical tests seem to indicate that it could generate some instabilities.
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