
Monografías del Seminario Matemático García de Galdeano 31, 415–423 (2004) 415

DIVERGENCE MEASURES AND LOGISTIC

REGRESSION MODELS

Leandro Pardo

Abstract. In this paper we present a review of some results about inference based on
φ-divergence measures, under assumptions of logistic regression model . The minimum
φ-divergence estimator, which is seen to be a generalization of the maximum likelihood
estimator is considered. This estimator is used in a φ-divergence measure which is the
basis of new statistics for solving some important problems regarding logistic regression
models: fitting the logistic regression model, residuals and dimensional reduction. Finally,
an extension is presented when we consider a multinomial response instead a binary re-
sponse.
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§1. Introduction

Let Yi, i = 1, .., I, be independent binomial random variables with parameters ni and pi,
i = 1, ..., I, we denote by ni1 the number of ”succes”. We assume that pi ≡ π

(
xT

i β
)
, where

xi = (1, xi1,..., xik)
T is a vector of k + 1 explanatory variables and the dependence of them

with pi is given by,
π
(
xT

i β
)

= exp (xiβ) / (1 + exp (xiβ)) ,

where β = (β0, β1, ..., βk)
T is a k+1 vector of unknown regression coefficients. The parameter

space is given by

Θ = {(β0, β1, ..., βk) : βi ∈ (−∞,∞) , i = 0, ..., k} (1)

and the loglikelihood function for β by

log L (β) = log
I∏

i=1

(
ni

ni1

)
π
(
xT

i β
)ni1
(
1− π
(
xT

i β
))ni−ni1

= c−
{

I∑
i=1

(
ni1

N
log

ni1

π (xT
i β) ni

+
ni − ni1

N
log

ni − ni1

(1− π (xT
i β)) ni

)}
,

where N = n1 + ... + nI .
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We consider the two following probability vectors

p̂ =
(n11

N
,
n12

N
,
n21

N
,
n22

N
, ....,

nI1

N
,
nI2

N

)T
and

p (β) ≡
(
π
(
xT

1 β
) n1

N
,
(
1− π
(
xT

1 β
)) n1

N
, ..., π
(
xT

I β
) nI

N
,
(
1− π
(
xT

I β
)) nI

N

)T
.

It is immediate to get
log L (β) = c−DKull (p̂, p (β)) ,

where by DKull (p̂, p (β)) we are denoting the Kullback-Leibler divergence between the prob-
ability vectors p̂ and p (β) . Then the maximum likelihood estimator of β can be defined as

β̂ = arg min
β0,β1,...,βk

DKullback (p̂, p (β)) . (2)

§2. Minimum φ-divergence estimator

The Kullback-Leibler divergence measure is a particular case of the φ− divergence measures
defined by Csiszár (1963) and Ali and Silvey (1966), as

Dφ (p̂, p (β)) =

{
I∑

i=1

(
π
(
xT

i β
)
ni

N
φ

(
ni1

π (xT
i β) ni

)
+

(
1− π
(
xT

i β
))

ni

N
φ

(
ni − ni1

(1− π (xT
i β)) ni

))}
,

(3)

where φ ∈ Φ∗, being Φ∗ the class of all convex functions φ (x) , x > 0, such that at
x = 1, φ (1) = 0, φ′′ (1) > 0, and at x = 0, 0φ (0/0) = 0 and 0φ (p/0) = limu→∞ φ (u) /u.
For every φ ∈ Φ∗ that is differentiable at x = 1, the function ψ (x) ≡ φ (x) − φ′ (1) (x− 1)
also belongs to Φ∗. Then we have Dψ (p̂, p (β)) = Dφ (p̂, p (β)) , and ψ has the additional
property that ψ′ (1) = 0. Because the two divergence measures are equivalent, we can consider
the set Φ∗ to be equivalent to the set Φ ≡ Φ∗ ∩ {φ : φ′ (1) = 0} . In what follows, we give our
theoretical results for φ ∈ Φ, but we often apply them to choices of functions in Φ∗.

Based on (2) and on the definition of Dφ (p̂, p (β)) , in Pardo et al (2003a) , it was defined
and studied the minimum φ-divergence estimator of β. This estimator is defined by

β̂φ = arg min
α,β1,...,βk

Dφ (p̂, p (β)) .

For φ (x) = x log x − x + 1 we obtain the maximum likelihood estimator and for φ (x) =
1
2
(x− 1)2 the minimum chi-squared estimator.

If we denote by X the I × (k + 1) matrix with rows xi, i = 1, ..., I and we assume that
rank (X) = k + 1, in the cited paper of Pardo et al (2003a) it was established that under the
assumption that φ is twice continuously differentiable in a neighborhood of 1 that

β̂φ = β0 +
(
XT Diag

((
ni

N

)
π
(
xT

i β0
) (

1− π
(
xT

i β0
))

i=1,...,I

)
X
)−1

XT

× Diag
((

CT
i

)
i=1,...,I

)
Diag
(
p (β0)

−1/2
)

(p̂− p (β0)) + o (‖p̂− p (β0)‖) ,
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where

Ci =
((ni

N

)
π
(
xT

i β0
) (

1− π
(
xT

i β0
)))1/2
( (

1− π
(
xT

i β0
))1/2

−π
(
xT

i β0
) )

, i = 1, ..., I

and also, under the assumption that ni/n→ λi when ni →∞, we have

√
N
(
β̂φ − β0

)
L→

N→∞
N

(
0,
(
XT Diag

(
λiπ
(
xT

i β0
) (

1− π
(
xT

i β0
)))

i=1,..,I
X
)−1
)

(4)

being λi = limN→∞ ni/N.
From (4) it is clear that

̂
Cov
(
β̂φ
)
≈ 1

N

(
XT Diag

(
λiπ
(
xT

i β̂φ
)(

1− π
(
xT

i β̂φ
)))

i=1,..,I
X

)−1

.

§3. Fitting the Logistic Regression Model: Residuals

We denote by β̂0, β̂1, ..., β̂k the maximum Likelihood estimators of β0, β1, ..., βk. If we estimate

π
(
xT

i β
)

by the maximum likelihood estimator π
(
xT

i β̂
)

, the classical Pearson chi-squared

statistic is given by

X2 =
I∑

i=1

(
ni1 − niπ

(
xT

i β̂
))2

niπ
(
xT

i β̂
)(

1− π
(
xT

i β̂
))

and the likelihood ratio test statistic by

D2 =
I∑

i=1

2

⎧⎨⎩ni1 log
ni1

niπ
(
xT

i β̂
) + (ni − ni1) log

ni − ni1

ni

(
1− π
(
xT

i β̂
))
⎫⎬⎭ .

If now we consider the minimum φ2-divergence estimators β̂φ2

0 , β̂φ2

1 , ..., β̂φ2

k of parameters
β0, β1, ..., βk, instead of the maximum likelihood estimators, we can estimate π

(
xT

i β
)

by

π
(
xT

i β̂φ2

)
. Pardo et al (2003b) have considered and studied the φ1−divergence test statis-

tic based on the minimum φ2-divergence estimator β̂φ2 , given by

Tφ1,φ2 = 2N
φ′′

1 (1)
Dφ1

(
p̂, p
(
β̂φ2

))
= 2

φ′′
1 (1)

I∑
i=1

ni

⎧⎨⎩π
(
xT

i β̂φ2

)
φ

⎛⎝ ni1

π
(
xT

i β̂φ2

)
ni

⎞⎠
+
(
1− π
(
π
(
xT

i β̂φ2

)))
φ

⎛⎝ ni2(
1− π
(
xT

i β̂φ2

))
ni

⎞⎠⎫⎬⎭ .

(5)

It is interesting to observe that for

φ2 (x) = x log x− x + 1 and φ1(x) =
1

2
(x− 1)2 ,
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we obtain that Tφ1,φ2 ≡ X2 and for

φ2 (x) = x log x− x + 1 and φ1(x) = x log x− x + 1,

we get Tφ1,φ2 ≡ D2. The following theorem presents the asymptotic distribution of the family
of test statistics Tφ1,φ2 .

Theorem 1. Suppose that the data Yi, i = 1, ..., I are binomially distributed with parameters
ni and π

(
xT

i β
)
. Choose functions φ1 and φ2 ∈ Φ and twice continuously differentiable in a

neighborhood of 1. Under the hypothesis p = p (β) and assuming that ni/n → λi > 0 when
ni → ∞, the test statistic Tφ1,φ2 has a chi-squared distribution with I − (k + 1) degrees of
freedom.

Based on this theorem, if the sample sizes are large enough, one can use the asymptotic
quantile χ2

I−(k+1),1−α, defined by the equation P
(
χ2

M−1 ≤ χ2
M−1,1−α

)
= 1− α, to propose the

decision rule:
“Reject HNull : p = p (β) if Tφ1,φ2 > χ2

I−(k+1),1−α ”.

The statistics X2, D2 and Tφ1,φ2 provide a single number which summarizes the agreement
of observed and fitted values. The advantage (as well as the disadvantage) of these statistics
is that a single number is used to summarize considerable information. Additional diagnostic
analyses are necessary to describe the nature of one lack of fit. Residual comparing observed
and fitted counts are useful for this purpose. From a classical point of view we have the residual
based on the Pearson’s test statistic X2, given by

ei =
ni1 − niπ

(
xT

i β̂
)

√
niπ
(
xT

i β̂
)(

1− π
(
xT

i β̂
)) ,

and residual based in the likelihood ratio test given by

di = sig
(
ni1 − niπ

(
xT

i β̂
))√√√√√2

⎧⎨⎩ni1 log
ni1

niπ
(
xT

i β̂
) + (ni − ni1) log

ni − ni1

ni

(
1− π
(
xT

i β̂
))
⎫⎬⎭.

In the same way we can define φ1−residuals based on minimum φ2-divergence estimator by

cφ1,φ2

i = sig
(
ni1 − niπ

(
xT

i β̂φ2

))√ 2ni

φ′′
1 (1)

⎧⎨⎩π
(
xT

i β̂φ2

)
φ1

⎛⎝ ni1

π
(
xT

i β̂φ2

)
ni

⎞⎠
+
(
1− π
(
xT

i β̂φ2

))
φ1

⎛⎝ ni2(
1− π
(
xT

i β̂φ2

))
ni

⎞⎠⎫⎬⎭
1/2

.

In the following theorem we present its asymptotic distribution.



Divergence Measures and Logistic Regression Models 419

Theorem 2. Suppose that the data Yi, i = 1, ..., I are binomially distributed with parame-
ters ni and π

(
xT

i β
)
. Choose functions φ1 and φ2 ∈ Φ twice continuously differentiable in a

neighborhood of 1. Assuming that ni/n→ λi > 0 when ni →∞, we have

cφ1,φ2

j
L→

N→∞
N
(
0, τ 2

j

)
where

τ 2
j = 1− λjπ

(
xT

j β0
) (

1− π
(
xT

j β0
))

xjIF

(
β0
)−1

xT
j

being IF (β0) = XT Diag
(
λiπ
(
xT

j β0
) (

1− π
(
xT

j β0
))

j=1,...,I

)
X the Fisher Information

matrix associated with the Logistic Regression Model.

This result is important because we can define the φ1−standarized residuals based on minimum
φ2-divergence estimator by (

cφ1,φ2

j

)∗
=

cφ1,φ2

j

τ̂φ2

j

being (
τ̂φ2

j

)2
= 1− nj

N
π
(
xT

j β̂φ2

)(
1− π
(
xT

j β̂φ2

))
xjIF

(
β̂φ2

)−1

xT
j .

§4. Dimensionality reduction

By dimensionality reduction we understand the procedure to determine if the independent vari-
ables in the model are ”significantly” related to the outcome variable. To choose this logistic
regression model we use a backward deletion procedure. Any stepwise procedure for deletion
of variables from a model is based on a statistical algorithm which checks for the ”importance”
of a variable is defined in terms of a measure of the statistical significance of the coefficient for
the variable, i.e., we must carry out the hypothesis test

HNull : βj = 0 against HAlt : βj �= 0 (j = 1, ..., k) (6)

In the first stage, we consider j = 1, ..., k, i.e., the logistic regression model with all available
explanatory variables. Then, we delete the explanatory variable associated with the regression
parameter, βk1 , if the associated p−value for testing, (6) with j = k1, pk1 , is the highest. In the
second stage, we rename the parameters βk1 , ..., βk as βk1+1, ..., βk−1, respectively. Therefore,
the logistic regression model with all the explanatory variables except the corresponding to the
parameter βk1 is considered. So, after testing (6) for j = 1, ..., k− 1, we delete the explanatory
variable with the highest associated p−value and so on. Finally, we stop the procedure when the
maximum p−value associated with the logistic regression model with the remaining expanatory
variables is sufficiently small.

In Pardo et al. (2003b) in order to solve the problem considered in (6) the following families
of tests statistics were considered

S
βj ,t
φ1,φ2

=
2N

φ′′
1 (1)

Dφ1

(
p
(
β̂φ2,t
)

, p
(

jβ̂φ2,t
))

,
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where β̂φ2,t is the minimum φ2- divergence estimator of β1, ..., βk+1−t and jβ̂φ2 is the minimum
φ2−divergence estimator of (β0,..., βj−1, 0, βj+1, ..., βk+1−t) in the stage t, and

T
βj ,t
φ1,φ2

=
2N

φ′′
1 (1)

(
Dφ1

(
p̂, p
(
β̂φ2,t
))
−Dφ1

(
p̂, p
(

jβ̂φ2,t
)))

.

In the following theorem we present the asymptotic distribution of the tests statistic S
βj ,t
φ1,φ2

and

T
βj ,t
φ1,φ2

.

Theorem 3. Suppose that the data Yi, i = 1, ..., I are binomially distributed with parame-
ters ni and π

(
xT

i β
)
. Choose functions φ1 and φ2 ∈ Φ twice continuously differentiable in a

neighborhood of 1. Then for testing

HNull : βj = 0 versus HAlt : βj �= 0,

the test statistics S
βj ,t
φ1,φ2

and T
βj ,t
φ1,φ2

are asymptotically distributed as a a chi-squared distribution
with 1 degree of freedom, under the assumption that ni/n→ λi > 0 when ni →∞.

Based on this theorem, if the sample sizes are large enough, one can use the asymptotic
quantile χ2

1,1−α, defined by the equation P
(
χ2

M−1 ≤ χ2
M−1,1−α

)
= 1− α, to propose the deci-

sion rule:
“Reject HNull if S

βj ,t
φ1,φ2

> χ2
M−1,1−α (or T

βj ,t
φ1,φ2

> χ2
1,1−α)”.

§5. Polytomous Logistic Regression Model

We consider a response random variable Y belonging to one of the J distinct categories C1, ..., CJ ,
which is observed together with p + 1 explanatory variables xT = (1, x1, ..., xp) ∈ Rp+1. For
convenience x0 = 1. Let πj (x) = P (Y ∈ Cj/x), j = 1, ..., J, denote the probability that
the observation of the random variable Y belongs to the category Cj, j = 1, ..., J, when the
explanatory variable is xT . More specifically suppose here, that the dependence between Y and
xT can be modeled by using the logistic assumption

πj (x) ≡ π
(
xT βj

)
= exp
(
xT βj

)
/

J∑
l=1

exp
(
xT βj

)
, j = 1, ..., J, (7)

where βT
j = (β0j, ..., βpj) , j = 1, ..., J − 1, is a vector of unknown parameters and βT

J =(
0, .(p+1.., 0

)
, for convenience. The vector βT =

(
βT

1 , ..., βT
J−1

)
is ν-dimensional with ν =

(J − 1) (p + 1). The model described in (7) is the classical Polytomous Logistic Regres-
sion Model (PLRM) or Multinomial Logistic Regression Model. For more details about this
model see Amemiya (1981), Anderson (1972, 1982, 1984), Lesaffre (1986), Lesaffre and Al-
bert (1986, 1989), Mantel (1966), Theil (1969), McCullag (1980) Agresti (2002), Engel (1988)
and references there in. In the following we shall denote by

Θ =
{
βT

j = (β0j, ..., βpj) , j = 1, ..., J − 1 : βst ∈ R, s = 0, .., p; t = 1, ..., J − 1
}

We assume that N different values of the vector of explanatory variables,

xT
i = (xi0, xi1, ..., xip) , i = 1, ..., N,
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are available. Let n (xi) be the number of observations considered when the explanatory vari-
able xT has the value xT

i , so that if xT is fixed at xT
i we have a multinomial distribution with

parameters (
n (xi) ; π

(
xT

i β1

)
, ..., π
(
xT

i βJ

))
.

Vectors of probabilities are denoted by π (xi) =
(
π
(
xT

i β1

)
, ..., π
(
xT

i βJ

))T
and total sample

size by n = n (x1) + ... + n (xN). Given the explanatory variable xT
i , we denote the number

of observations in the class Cs by ysi. It is clear that n (xi) =
∑J

s=1 ysi. To estimate βjs

(j = 0, ..., p; s = 1, ..., J − 1) we maximize the loglikelihood function

log
N∏

i=1

J∏
l=1

n (xi)!

y1i!×...×yJi!
π
(
xT

i βl

)yli ≈ log
N∏

i=1

J∏
l=1

π
(
xT

i βl

)yli ≡ L (β)

with yJi = n (xi)−
∑J−1

s=1 ysi.
It is not difficult to establish that(

∂2L (β)

∂β2

)
(p+1)(J−1)×(p+1)(J−1)

= −nXT V n (β) X,

where
XT =

(
XT

1 , ..., XT
N

)
(p+1)(J−1)×(J−1)N

,

being

X i =

⎛⎜⎜⎝
xT

i 0T ... 0T

0T xT
i ... 0T

. . . .
0T 0T ... xT

i

⎞⎟⎟⎠
(J−1)×(J−1)(p+1)

(8)

and the matrix V n (β) is defined by

V n (β) = diag

(
n (x1)

n
V 1 (β) , ...,

n (xN)

n
V N (β)

)
N(J−1)×N(J−1)

with
V i (β)(J−1)×(J−1) =

(
π
(
xT

i βs

) (
δst − π

(
xT

i βt

)))
s,t=1,...,J−1

, i = 1, ..., N,

and δst is the Kronecker delta.
The Fisher information matrix is given by

IF,n (β) = XT V n (β) X =
N∑

j=1

n (xj)

n
XT

j V j (β) Xj

and √
n
(
β̂ − β0

)
L→

n→∞
N
(
0, IF,λ (β0)

)
,

where β̂ is the maximum likelihood estimator of β and β0 is the true value of the parameter β,

IF,λ (β0) =
N∑

j=1

λjX
T
j V j (β0) Xj and λj = lim

n(xj)

n
, j = 1, ..., N .
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Let us introduce the two following probability vectors,

p̂ =
(y11

n
, ...,

yJ1

n
,
y12

n
, ...,

yJ2

n
, ...,

y1N

n
, ...,

yJN

n

)T
,

and

p (β) =
(

n(x1)
n

(
π
(
xT

1 β1

)
, ..., π
(
xT

1 βJ

))
, ..., n(xN )

n

(
π
(
xT

Nβ1

)
, ..., π
(
xT

NβJ

)))T
=
(

n(x1)
n

π (x1)
T , ..., n(xN )

n
π (xN)T

)T
.

(9)

The Kullback-Leibler divergence measure between the probability vectors p̂ and p (β) is

DKullback (p̂, p (β)) =
J∑

l=1

N∑
i=1

yji

n
log

yli

n

π (xT
i βl)

n (xi)

n

= kte− 1

n
log

N∏
i=1

J∏
l=1

π
(
xT

i βl

)yli

≈ −L (β) .

Then the MLE of parameter β can be equivalently defined by the condition

β̂ = arg minDKullback (p̂, p (β)) ,

and its extension to the minimum φ-divergence estimator, is given by

β̂φ ≡ arg min
β01,..,βpJ−1

Dφ (p̂, p (β)) . (10)

In relation to the asymptotic properties of the minimum φ-divergence estimator we have that
the most important result is

√
n
(
β̂φ − β0

)
L→

n→∞
N
(
0, IF,λ (β0)

)
,

and then
̂

Cov
(
β̂φ
)
≈ 1

N

(
XT V n

(
β̂φ
)

X
)−1

.

After estimating the unknown parameters, we would like to know how effective the model
we have is in describing the outcome variable. This is referred to as goodness-of-fit. We will
conclude that the model fits if (a) summary measures of the distance between the observed
sample values and the values predicted by the model are small and (b) the contribution of each
pair (observed, predicted) to these summary measures is unsystematic and is small relative to
the error structure of the model. Thus, a complete assessment of the fitted model will involve
both (a) computation and evaluation of overall measures of fit, (b) examination of the indi-
vidual components of these measures. It is possibe to present families of statistics based on
φ-divergence measures to solve (a) in a similar way to the families of test statistics given in
(5). Additional diagnosis analyses are necessary to describe the nature of one lack of fit. A
family of residuals based on φ-divergences that is a generalization of the classical residuals it
is possible to define on the basis of φ-divergence measures.
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