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THE OSEEN EQUATIONS IN Rn AND

WEIGHTED SOBOLEV SPACES

Chérif Amrouche and Ulrich Razafison

Abstract. In this paper, we study the nonhomogeneous Oseen equations in Rn. We prove
an existence and uniqueness result in weighted Sobolev spaces. As the main tool, we prove
an existence and uniqueness theorem of a scalar model of those equations.
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§1. Introduction

Let Ω′ be an open bounded set of Rn and Ω = Rn \ Ω′. In Ω, the Navier-Stokes equations
describe the flow of a viscous and incompressible fluid past the obstacle Ω′. The problem
consists in looking for a velocity field u and a pressure function π satisfying the following
equations

−ν∆u + u.∇u +∇π = f in Ω

div u = 0 in Ω

u = u0 on ∂Ω

lim u(x) = u∞, when |x| → ∞.

(1)

In System (1), ν is the viscosity of the fluid, u0 is the boundary value, f is the external forces
acting on the fluid and u∞ is a constant vector that, after a change of coordinate, we may assume
u∞ = he1, with h > 0 and e1 is the first vector of the canonical basis of Rn. Linearizing (1)
around the constant vector u∞, we lead to the Oseen system (see [15]):

−ν∆u + k
∂u
∂x1

+∇π = f in Ω

div u = 0 in Ω

u = u0 on ∂Ω

lim u(x) = 0, when |x| → ∞,

(2)

where k > 0. One of the first work devoted to System (2) is due to Finn [10] where the case
n = 3 is considered and where the existence of solutions is based on the Galerkin’s method.
In [11], Galdi investigated (2) by setting the problem in homogeneous Sobolev spaces. The
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Lizorkin’s Multiplier Theorem is then used to prove existence results. In [8] Farwig studied
(2), with Ω ⊂ R3, in anisotropically weighted L2 spaces, where the weight function ηα

β (x) =

(1+ |x|)α(1+ |x|−x1)
β reflects the decay properties of the Oseen fundamental solution (O, P)

which is defined by

Oij(x) =

(
δij∆−

∂

∂xi∂xj

)
Φ(x), P i(x) = − ∂

∂xi

(
1

4π|x|

)
, (3)

where

Φ(x) =
1

4πk

∫ k(|x|−x1)/2ν

0

1− e−t

t
dt. (4)

Indeed, we can notice that O has the following decay properties:

O(x) = O(η−1
−1(x)), ∇O(x) = O(η

−3/2
−3/2(x)),

∂2O(x)

∂xi∂xj

= O(η−2
−2(x)),

∂O(x)

∂x1

= O(η−2
−1(x)).

To solve (2), Farwig used convolutions with the fundamental solution and the results he ob-
tained on the scalar model

−ν∆u + k
∂u

∂x1

= f in Ω

u = u0 on ∂Ω.

(5)

For the particular case Ω = R3, we studied in [6], System (2) in anisotropically weighted Lp

spaces, 1 < p < ∞, with the help of the results obtained on the scalar model in [4] and the
study of convolutions with the fundamental solution done in [13]. The aim of this paper is to
consider the following nonhomogeneous Oseen problem: given a vector field f and a function
g, we look for a solution (u, π) satisfying

−∆u +
∂u
∂x1

+∇π = f in Rn

div u = g in Rn.

(6)

We supposed, without loss of generality, ν = k = 1. We set the problem in weighted Sobolev
spaces with the radial weight function ηα

0 (x) = (1 + |x|)α and we proceed as in [6]. More
precisely, we first prove an existence result for the scalar model (5) when Ω = Rn which was
announced in [3]. This will be done in Section 3. Then in Section 4, the result will be used
to prove the existence of a solution of System (6). In Section 2, we introduce the weighted
Sobolev spaces and some of their basic properties that we use in the sequel.

§2. Notations and functional framework

2.1. Notations

In this paper, n ≥ 3 is an integer, p is a real number in the interval ]1, +∞[. The dual exponent
of p denoted p′ is defined by the relation 1/p+1/p′ = 1. In the sequel, for any space B of scalar-
value distributions, B denotes Bn, and F will denote the vector field F = (F1, F2, ..., Fn). A
point in Rn is denoted by x = (x1, x2, ..., xn) and its distance to the origine by

r = |x| = (x2
1 + x2

2 + ... + x2
n)1/2.
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We denote by [k] the integer part of k. For any j ∈ Z, IPj stands for the space of polynomials
of degree lower than j and IP∆

j the harmonic polynomials of IPj. If j is a negative integer, we
set by convention IPj = {0}. We recall that D′(Rn) is the well-known space of distributions
and S ′(Rn) is the space of tempered distributions. Given a Banach space B, with dual space B′

and a closed subspace X of B, we denote by B′⊥X the subspace of B′ orthogonal to X , i.e,

B′⊥X = X⊥ = {f ∈ B′,∀v ∈ X, < f, v >= 0} = (B/X)′.

Finally, as usual, C > 0 denotes a generic constant the value for which may change from line
to line.

2.2. Functional framework

We shall now introduce the weighted Sobolev spaces which will be the functional framework.
Let ρ be the weight function ρ = 1 + r. For m ∈ N and α ∈ R we define

k = k(m, n, p, α) =

⎧⎪⎨⎪⎩
−1 if

n

p
+ α /∈ {1, ...,m}

m− n

p
− α if

n

p
+ α ∈ {1, ...,m}

and we define the following weighted space

Wm,p
α (Rn) = {u ∈ D′(Rn);∀λ ∈ Nn,

0 ≤ |λ| ≤ k, ρα−m+|λ|(ln(1 + ρ))−1∂λu ∈ Lp(Rn),

k + 1 ≤ |λ| ≤ m, ρα−m+|λ|∂λu ∈ Lp(Rn)},

which is a Banach space equipped with its natural norm given by

‖u‖W m,p
α (Rn) =⎛⎝ ∑

0≤|λ|≤k

‖ρα−m+|λ|(ln(1 + ρ))−1∂λu‖p
Lp(Rn) +

∑
k+1≤|λ|≤m

‖ρα−m+|λ|∂λu‖p
Lp(Rn)

⎞⎠1/p

.

We define the seminorm

|u|W m,p
α (Rn) =

⎛⎝∑
|λ|=m

‖ρα∂λu‖p
Lp(Rn)

⎞⎠1/p

.

Let us give an example of such space. Let m = 1, α = 0, then the space W 1,p
0 (Rn) is defined

as follow:

W 1,p
0 (Rn) = {u ∈ D′(Rn), ρ−1u ∈ Lp(Rn),∇u ∈ Lp(Rn)}, if p �= n,

W 1,n
0 (Rn) = {u ∈ D′(Rn)), (ln(1 + ρ))−1ρ−1u ∈ Ln(Rn),∇u ∈ Ln(Rn)}.

The logarithmic weight function introduced in the definition of the space Wm,p
α (Rn) only ap-

pears for the values of m, p, α such that n/p + α ∈ {1, ...,m} and, for such values, it al-
lows to obtain Hardy-type inequalities (see below). A detailed study of the space Wm,p

α (Rn)
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can be found in [1, 12, 14]. We recall some of its properties. All the local properties of
Wm,p

α (Rn) coincide with those the classical Sobolev space Wm,p(Rn). The space D(Rn) is
dense in Wm,p

α (Rn). Thus the dual space, denoted by, W−m,p′
−α (Rn) is a space of distributions.

If n/p + α /∈ {1, ...,m}, we have the following algebraic and topological inclusions

Wm,p
α (Rn) ⊂ Wm−1,p

α−1 (Rn) ⊂ ... ⊂ W 0,p
α−m(Rn). (7)

For any λ ∈ Nn, the mapping

u ∈ Wm,p
α (Rn) → ∂λu ∈ Wm−|λ|,p

α (Rn) (8)

is continuous. For any λ ∈ Nn and γ ∈ R, we have

|∂λ(ργ)| ≤ Cργ−|λ|, (9)

which implies that, if n/p + α /∈ {1, ...,m}, the mapping

u ∈ Wm,p
α (Rn) → ργu ∈ Wm,p

α−γ(R
n) (10)

is an isomorphism.
Let j be an integer, then IPj is included in Wm,p

α (Rn) with

j =

[
m− n

p
− α

]
if

n

p
+ α /∈ Z−

j = m− 1− n

p
− α otherwise.

(11)

The Hardy-type inequalities are one of the main properties of the space Wm,p
α (Rn) (see [1]).

Indeed, let m ≥ 1 and α ∈ R. Then there exists a constant C = C(m, p, α, n) such that

∀u ∈ Wm,p
α (Rn), inf

λ∈IPj′
‖u + λ‖W m,p

α (Rn) ≤ C|u|W m,p
α (Rn), (12)

where j′ = min(j, 0) and j is the highest degree of polynomials contained in Wm,p
α (Rn).

Inequality (12) also allows to have some isomorphism results on the gradient and the divergence
operators. For instance, denote Hp = {v ∈ Lp(Rn), div v = 0}, then the following operator

div : Lp(Rn)/Hp → W−1,p
0 (Rn)⊥IP[1−n/p′] (13)

is an isomorphism.
Another consequence of Inequality (12) is the following property (see [1]): Let m ≥ 1 be an
integer and let u ∈ D′(Rn) be such that

∀λ ∈ Nn : |λ| = m, ∂λu ∈ Lp(Rn).

Then, there exists a polynomial Q ∈ IPm−1, depending on u such that u + Q ∈ Wm,p
0 (Rn) and

inf
µ∈IP[m−n/p]

‖u + Q + µ‖W m,p
0 (Rn) ≤ C|u|W m,p

0 (Rn), (14)
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Let us now introduce the anisotropically weighted space

W̃ 1,p
0 (Rn) =

{
v ∈ W 1,p

0 (Rn),
∂v

∂x1

∈ W−1,p
0 (Rn)

}
which is a Banach space for the following norm

‖v‖W̃ 1,p
0 (Rn) = ‖ρ−1v‖Lp(Rn) +

n∑
i=1

∥∥∥∥ ∂v

∂xi

∥∥∥∥
Lp(Rn)

+

∥∥∥∥ ∂v

∂x1

∥∥∥∥
W−1,p

0 (Rn)

.

This norm, which is equivalent to the natural one, allows to prove the density of D(Rn) in
W̃ 1,p

0 (Rn). This property is proved in [5]. Note that if p = n, then the weight function ρ in the
definition of the norm is replaced by ρ ln(1 + ρ).

§3. The scalar Oseen equation in Rn

We consider the scalar model of the Oseen equations: given f , we look for a function u satis-
fying

−∆u +
∂u

∂x1

= f in Rn. (15)

In this section, we shall solve (15) in weighted Sobolev spaces. Let us first recall an existence
result of Equation (15) when f ∈ Lp(Rn). The result states that, in this case, the scalar Oseen
equation (15) has a solution u ∈ Lp

loc(R
n) such that ∂2u

∂xi∂xj
∈ Lp(Rn), i, j = 1, ..., n and

∂u
∂x1
∈ Lp(Rn) also satisfying∥∥∥∥ ∂2u

∂xi∂xj

∥∥∥∥
Lp(Rn)

+

∥∥∥∥ ∂u

∂x1

∥∥∥∥
Lp(Rn)

≤ C‖f‖Lp(Rn).

A proof of this result can be found in [9, 11]. It uses Fourier transform and the multiplier
theorem of Lizorkin. We also recall that if u ∈ S ′(Rn) satisfies

−∆u +
∂u

∂x1

= 0,

then u is a polynomial (see [4, 9]). We shall now look for a solution which belongs to W̃ 1,p
0 (Rn).

Note that in this case, from (8), we have −∆u + ∂u
∂x1

∈ W−1,p
0 (Rn). Moreover, for any λ ∈

W̃ 1,p′
0 (Rn), due to the density of D(Rn) in W̃ 1,p′

0 (Rn), we can easily prove that

< −∆u +
∂u

∂x1

, λ >
W−1,p

0 (Rn)×W 1,p′
0 (Rn)

=< u,−∆λ− ∂λ

∂x1

>
W 1,p

0 (Rn)×W−1,p′
0 (Rn)

.

Thus, we have the following theorem:

Theorem 1. Assume that f ∈ W−1,p
0 (Rn) and satisfies the compatibility condition

∀λ ∈ IP[1−n/p′], < f, λ >
W−1,p

0 (Rn)×W1,p′
0 (Rn)

= 0. (16)

Then the scalar Oseen equation (15) has a solution u ∈ W̃ 1,p
0 (Rn), unique up to a polynomial

of IP[1−n/p], also satisfying

inf
λ∈IP[1−n/p]

‖u + λ‖W̃ 1,p
0 (Rn) ≤ C‖f‖W−1,p

0 (Rn). (17)
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Proof. From the uniqueness result, one can easily see that if u ∈ W̃ 1,p
0 (Rn) satisfies (15) with

f = 0, then u is a polynomial of IP[1−n/p]. Let us prove existence. Since f ∈ W−1,p
0 (Rn) and

satisfies (16), from (13), there exists F ∈ Lp(Rn) such that div F = f and

‖F‖Lp(Rn) ≤ C‖f‖W−1,p
0 (Rn),

where the constant C > 0 does not depend on F. Now, using the existence result given above,
for any i = 1, ..., n, there exists vi ∈ Lp

loc(R
n) such that, for j, k = 1, ..., n

∂2vi

∂xj∂xk

∈ Lp(Rn) and
∂vi

∂x1

∈ Lp(Rn),

solution of

−∆vi +
∂vi

∂x1

= Fi.

Moreover, for any i = 1, ..., n, we have the estimate∥∥∥∥ ∂2vi

∂xj∂xk

∥∥∥∥
Lp(Rn)

+

∥∥∥∥ ∂vi

∂x1

∥∥∥∥
Lp(Rn)

≤ C‖Fi‖Lp(Rn) ≤ C‖f‖W−1,p
0 (Rn).

As ∂2vi

∂xj∂xk
∈ Lp(Rn), from (14), there exists a polynomial qi ∈ IP1 such that vi+qi ∈ W 2,p

0 (Rn)

also satisfying

inf
µ∈IP[2−n/p]

‖vi + qi + µ‖W 2,p
0 (Rn) ≤ C

∥∥∥∥ ∂2vi

∂xj∂xk

∥∥∥∥
Lp(Rn)

≤ C‖f‖W−1,p
0 (Rn). (18)

Now, setting u = div (v + q), it follows from (8) that, u ∈ W 1,p
0 (Rn) and satisfies (15). From

(8) and (18), we get the estimate

inf
λ∈IP[1−n/p]

‖u + λ‖W 1,p
0 (Rn) ≤ C‖f‖W−1,p

0 (Rn) (19)

Finally, since ∆u ∈ W−1,p
0 (Rn), from differential equation, we deduce ∂u

∂x1
∈ W−1,p

0 (Rn),

which in turn gives u ∈ W̃ 1,p
0 (Rn). From (15) and (19), we obtain (17). �

Note that, the particular case p = 2 and n = 3 of the previous theorem is proved in [2]. The
case 1 < p <∞ and n = 3 is proved in [4] in a slightly different way.

§4. The Oseen problem in Rn

In this section, we consider the nonhomogeneous Oseen problem: given a vector field f and a
function g, we look for a solution (u, π) satisfying

−∆u +
∂u
∂x1

+∇π = f in Rn,

div u = g in Rn.

(20)
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We recall that if f ∈ Lp(Rn) and g ∈ W 1,p(Rn), System (20) has a solution (u, π) ∈ Lp
loc(R

n)×
Lp

loc(R
n) such that ∂2u

∂xi∂xj
∈ Lp(Rn), i, j = 1, ..., n, ∂u

∂x1
∈ Lp(Rn) and ∇π ∈ Lp(Rn) with the

estimate∥∥∥∥ ∂2u
∂xi∂xj

∥∥∥∥
Lp(Rn)

+

∥∥∥∥ ∂u
∂x1

∥∥∥∥
Lp(Rn)

+ ‖∇π‖Lp(Rn) ≤ C
(
‖f ‖Lp(Rn) + ‖g‖W 1,p(Rn)

)
.

As for the scalar case, the proof of this existence result is based on the Fourier transform and
the multiplier theorem of Lizorkin (see [9, 11]). We also recall that if (u, π) ∈ S ′(Rn)×S ′(Rn)
satsifies (20) with f = g = 0, then u and π are polynomials. The proof of this uniqueness result
can be found in [6, 9]. We introduce the space

N k =

{
(λ, µ) ∈ IPk × IP∆

k−1,−∆λ +
∂λ

∂x1

+∇µ = 0, div λ = 0

}
.

We shall now look for a solution (u, π) of (20) belonging to W̃1,p
0 (Rn) × Lp(Rn). To reach

this goal, we shall use Theorem 1. For the existence of the pressure π, we need a result on the
Laplace operator: The following mapping

∆ : Lp(Rn) −→ W−2,p
0 (Rn)⊥IP[2−n/p′], (21)

is an isomorphism (see [1] for the proof).

Theorem 2. Let f ∈W−1,p
0 (Rn), g ∈ Lp(Rn) ∩W−1,p

0 (Rn) satisfy

∀λ ∈ IP[1−n/p′], < f, λ >
W−1,p

0 (Rn)×W1,p′
0 (Rn)

= 0 (22)

and
∀λ ∈ IP[1−n/p′], < g, λ >

W−1,p
0 (Rn)×W1,p′

0 (Rn)
= 0. (23)

Then the Oseen system (20) has a solution (u, π) ∈ W̃1,p
0 (Rn) × Lp(Rn), unique up to an

element of N [1−n/p], also satisfying

inf
λ∈IP[1−n/p]

‖u + λ‖W̃1,p
0 (Rn) + ‖π‖Lp(Rn) ≤ C

(
‖f ‖W−1,p

0 (Rn) + ‖g‖Lp(Rn) + ‖g‖W−1,p
0 (Rn)

)
.

(24)

Proof. Let us first notice that if (u, π) ∈ W̃1,p
0 (Rn)×Lp(Rn) and satisfies (20) with f = g = 0,

then (u, π) ∈ N [1−n/p] which proves the uniqueness. Let us now prove existence. Let f ∈
W−1,p

0 (Rn) satisfies (22) and g ∈ Lp(Rn) ∩W−1,p
0 (Rn) satisfies (23). Then, from (8), we get

div f+∆g− ∂g
∂x1
∈ W−2,p

0 (Rn). Note that the polynomials of IP[2−n/p′] are at most polynomials
of degree less than one. Then, from (22) and (23), for any µ ∈ IP[2−n/p′], we have

< div f + ∆g − ∂g

∂x1

, µ >
W−2,p

0 (Rn)×W 2,p′
0 (Rn)

= − < f,∇µ >
W−1,p

0 (Rn)×W1,p′
0 (Rn)

+ < g,
∂µ

∂x1

>
W−1,p

0 (Rn)×W 1,p′
0 (Rn)

= 0.
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It follows that div f + ∆g − ∂g
∂x1

∈ W−2,p
0 (Rn)⊥IP[2−n/p′]. Thanks to the isomorphism of the

Laplace operator (21), there exists a unique function π ∈ Lp(Rn), such that

∆π = div f + ∆g − ∂g

∂x1

(25)

also satisfying

‖π‖Lp(Rn) ≤ C

(
‖div f ‖W−2,p

0 (Rn) + ‖∆g‖W−2,p
0 (Rn) +

∥∥∥∥ ∂g

∂x1

∥∥∥∥
W−2,p

0 (Rn)

)
≤ C
(
‖f ‖W−1,p

0 (Rn) + ‖g‖Lp(Rn) + ‖g‖W−1,p
0 (Rn)

)
.

(26)

Next, we deduce that f − ∇π ∈ W−1,p
0 (R3). Moreover, recalling that the polynomials of

IP[1−n/p] are at most constants and from (22), we see that

∀λ ∈ IP[1−n/p′], < f−∇π, λ >
W−1,p

0 (Rn)×W1,p′
0 (Rn)

= 0.

Using Theorem 1, there exists a vector field u ∈ W̃1,p
0 (Rn) satisfying

−∆u +
∂u
∂x1

= f−∇π.

with the estimate

inf
λ∈IP[1−n/p]

‖u + λ‖W̃1,p
0 (Rn) ≤ C

(
‖f ‖W−1,p

0 (Rn) + ‖∇π‖W−1,p
0 (Rn)

)
≤ C
(
‖f ‖W−1,p

0 (Rn) + ‖g‖Lp(Rn) + ‖g‖W−1,p
0 (Rn)

)
.

(27)

From (26) and (27), we easily obtain (24). Let us now prove div f = g. From (25), we can
observe that

−∆(div u− g) +
∂

∂x1

(div u− g) = 0.

Thanks to the uniqueness result of the scalar Oseen equation (15), we deduce that div u− g is
a polynomial. But, we have div u − g ∈ Lp(Rn) which implies that div u − g is a polynomial
of Lp(Rn). Thus div u− g = 0 which ends the proof. �

This result is proved in [6] for the particular case n = 3.
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