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MULTI-ARM CLINICAL TRIALS WITH

FINITE RESPONSE

AND NON HOMOGENEOUS URN FUNCTION

José A. Moler, Fernando Plo and Miguel San Miguel

Abstract. An adaptive design for a clinical trial with prognostic factors and more than two
treatments is described using a generalised urn model in a random environment. Patients
arrive sequentially and treatments are applied according to a function of the urn composi-
tion. This function may change at each stage. Patient’s response is immediate and discrete,
with a finite number of possible values. The evolution of the urn composition is expressed
by a recurrence equation that fits the Robbins-Monro scheme of stochastic approximation.
In this setting, we obtain asymptotic properties for the performance of each treatment and
we illustrate the application of the rule with an example.
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§1. Introduction

A sequential design is called adaptive design or response-driven design when, in each stage, the
sequential allocation is made depending on the past allocations and outcomes. In the context
of clinical trials, the use of accruing information can help to limit the number of patients that
are exposed to treatments with high probability of failure. Randomised urn models are the
techniques commonly used to perform adaptive designs (see [3] and [8] and the references
therein).

The randomised Play-The-Winner rule introduced in [9], is a well-known adaptive design
used in clinical trials. In [1] this rule is modified to include prognostic factors. In [6], their
model is modified in several ways. First, more than two treatments are considered in the trial.
Second, the replacement matrices and the success probability functions are general. Third,
a modulation of the allocation rule is allowed by means of an urn function and, fourth, the
asymptotic results for the statistics that measure the performance of the treatments are obtained
without assumptions on the success probabilities of the treatments.

In this paper, the design introduced in [6] is generalized in two ways. First, by assuming
finite responses of the patients, instead of dichotomous, and second, by permitting a different
allocation rule in each step, that is, by considering a sequence of urn functions.

In order to obtain these results, the evolution of the urn composition is expressed by a re-
currence equation that fits the Robbins-Monro scheme of stochastic approximation. Stochastic
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approximation theory (see, for example, [2]) appears as an adequate framework to study some
stochastic processes generated in an adaptive design.

This paper is organised as follows. In section 2, the adaptive design is described by means
of a Pólya urn model in a random environment. Conditions on this urn model that guarantee
convergence results of the urn composition are established. In section 3, estimators of the
treatments performance are proposed, their asymptotic behaviour is studied and an example is
included to illustrate the previous results.

§2. Adaptive design with finite response and non homogeneous urn
function.

We are interested in an adaptive design of a clinical trial to compare L ≥ 2 treatments with
finite response, where the patients arrive sequentially and they can be classified according to a
prognostic factor with K + 1 levels 0, . . . , K.

For each n, let δn = (δ1n, . . . , δLn) be an L-dimensional random vector of indicator vari-
ables such that δhn = 1 if treatment h has been applied to the n-th patient and 0 otherwise,
h = 1, . . . , L.

Let {ξn} be a sequence of random variables independent and identically distributed, such
that, for each n, ξn represents the level of the n-th patient. We denote P (ξ1 = i) = πi,
0 < πi < 1, i = 0, . . . , K.

In order to assign treatments, we consider an urn that contains balls of L different types.
Let Xn = (X1n, . . . , XLn) be the proportion of balls of each type in the urn after stage n.
For i = 1, · · · , L, we consider Xi0 > 0 and we denote T0 =

∑L
i=0 Xi0. As it will be seen

later, the urn replacement policy guarantees that for all n, Xn ∈ ∆L−1, where ∆L−1 = {x ∈
RL :
∑L

i=1 xi = 1, xi > 0}. We consider, for each n, a measurable function ϕn : ∆L−1 →
∆L−1, and ϕn(Xn) = (ϕ1n(Xn), . . . , ϕLn(Xn)). The n-th patient, independently of his level, is
assigned to treatment h with probability ϕhn(Xn−1), h = 1, . . . , L.

The patient gives, in each stage n, an immediate and discrete response Zn that can take
J different values: j = 1, . . . , J . The composition of the urn is modified in the following
way: given that the treatment assigned is h and the patient’s level is i, if the response is j
then c(Jh−(j−1));t(i) ≥ 0 balls of type t are added to the urn, t = 1, . . . , L. Observe that the
first subscript, Jh − (j − 1), indicates that for each treatment applied, h, there are J different
replacement vectors, depending on the response given j. So that, taking each replacement
vector as a row of a JL × L non-negative matrix, we have C(i) = (crt(i)), i = 0, . . . , K,
r = 1, . . . , JL, t = 1, . . . , L. We assume that

[A1] C(i)1t = s1t, i = 0, . . . , K,

where 1t is the column vector of ones and s is a positive real number. Obviously, the total
number of balls added to the urn in every stage is s. Then, the total number of balls in the urn
after the n-th replacement, Tn, is T0 + ns.

At each stage n, we consider γn = (γ1n, . . . , γLn), where γjn = 1 if Zn = j and 0 otherwise.
The replacement policy is modelled by a random replacement matrix, C(ξn), and by the random
vector:

An := (δ1nγ1n, . . . , δ1nγJn, . . . , δLnγ1n, . . . , δLnγJn),

which takes a value from the set {ei}i=1,...,JL, the natural basis of RJL. So that, in the n-th
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replacement, balls of each colour are added to the urn according to the vector AnC(ξn). The
evolution of the process {Xn} is represented by means of the recursion

Xn+1 =
TnXn + An+1C(ξn+1)

Tn+1

= Xn +
An+1C(ξn+1)− sXn

Tn+1

. (1)

The process {(Xn, ξn, An)} is a generalised Pólya urn model of the clinical trial and we
denote its natural filtration by {Fn}. The process {ξn} can be seen as the random environment
of the urn.

The random environment is supposed to be independent of the past history of the process.
That is:

[A2] For each n ≥ 1, ξn+1 is independent of Fn.

The response variable, Zn, depends on both the treatment assigned δn and the type of patient
ξn, and it is independent of the previous history of the clinical trial. That is,

P (Zn = j | δhn = 1, ξn = i, Fn−1) = P (Zn = j | δhn = 1, ξn = i), j = 1, . . . , J (2)

for h = 1, . . . , L and i = 0, . . . , K.
Besides, given a treatment h and a patient’s level i, the probability distribution of Zn does

not depend on n, and we denote

phi(j) := P (Zn = j | δhn = 1, ξn = i), h = 1, · · · , L, i = 0, . . . , K, j = 1, . . . , J. (3)

where 0 < phi(j) < 1, for all h, i and j. Then, for h = 1, . . . , L, i = 0, . . . , K and r =
0, . . . , J − 1 we have

P (An = e(Jh−r)|Fn−1, ξn = i) = P (δhn = 1, Zn = J − r|Fn−1, ξn = i)

= P (Zn = J − r | δhn = 1, Fn−1, ξn = i)

×P (δhn = 1 | Fn−1, ξn = i)

= ϕhn(Xn−1)phi(J − r) (4)

Therefore, if we consider the matrices

Q(i) =

⎛⎜⎝ p1i(1) p1i(2) . . . p1i(J) 0 . . . 0 0 . . . 0
...

...
...

...
...

. . .
...

...
. . .

...
0 0 0 0 0 . . . pLi(1) pLi(2) . . . pLi(J)

⎞⎟⎠ ,

for i = 0, . . . , K, we have,

P (An = ej|Fn−1, ξn) = (ϕn(Xn−1)Q(ξn))j, j = 1, . . . , JL. (5)

The recursive equation (1) suggests the following result.

Proposition 1. The urn process {(Xn, ξn, An)} verifying [A1] and [A2] fits the stochastic
approximation scheme
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Xn+1 = Xn + γn+1(Fn+1(Xn) + εn+1) (6)

where:
1.- {γn} is a sequence of positive real numbers such that

∑
γn = ∞ and

∑
γ2

n < ∞.
2.- Fn+1(x) = ϕn+1(x)H − sx, where H is a L× L non-negative matrix.
3.- {εn} is a sequence of martingale differences relative to the filtration {Fn}.

Proof. Since

Xn+1 = Xn +
An+1C(ξn+1)− sXn

Tn+1

,

then

E[Xn+1 | Fn] = Xn +
1

Tn+1

(E[An+1C(ξn+1) | Fn]− sXn)

= Xn +
1

Tn+1

(E[E[An+1C(ξn+1) | Fn, ξn+1] | Fn]− sXn)

= Xn +
1

Tn+1

(ϕn+1(Xn)E[Q(ξn+1)C(ξn+1) | Fn]− sXn)

= Xn +
1

Tn+1

(ϕn+1(Xn)E[Q(ξn+1)C(ξn+1)]− sXn)

where we have applied (5) in the third equality and [A2] in the fourth.
Thus, denoting H = E[Q(ξ1)C(ξ1)], the urn process can be expressed as

Xn+1 = E[Xn+1 | Fn] + (Xn+1 − E[Xn+1 | Fn])

= Xn +
1

Tn+1

[(ϕn+1(Xn)H − sXn) + εn+1].

where

εn+1 = Tn+1(Xn+1 − E[Xn+1 | Fn])

= An+1C(ξn+1)− ϕn+1(Xn)H.

Denoting

γn+1 =
1

Tn+1

,

and
Fn+1(Xn) = ϕn+1(Xn)H − sXn

the result follows.

Remark 1. When ϕ is continuous, F is continuous too and the scheme of Proposition 2.1 is the
classical Robbins-Monro stochastic approximation scheme (see [5] or [2]).

In order to obtain asymptotic results for the process {Xn}, the ODE (Ordinary Differential
Equation) method will be applied (see [5]). This method relates the asymptotic behaviour of a
stochastic recursive process with the asymptotics of the associated ODE. A broader discussion
of this method applied to generalised Pólya urn models can be seen in [4] and an application to
an adaptive design with dichotomous response in [6]. The following proposition will be crucial
in the application of the ODE method to the process {Xn}.
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Proposition 2. Let the urn process {(Xn, ξn, An)} be under assumptions [A1] and [A2]and
let Fn+1 be the function obtained in Proposition 2.1. If there exists an L × L irreducible non-
negative matrix C verifying C1t = s1t, s > 0, such that

‖Fn+1(Xn)− Xn(C − sI)‖ → 0 a.s.

and if u is the normalised left eigenvector of C associated with the eigenvalue s, then

Xn → u, a.s.

Proof. Equation (6) can be written as

Xn+1 = Xn + γn+1((Xn − u)(C − sI) + εn+1 + βn+1) (7)

where
βn+1 = Fn+1(Xn)− Xn(C − sI) (8)

so that {βn} converges a.s. to 0.
Moreover, from Corollary A.1 in [4] , the conditions of the Theorem 5.2.1 in [5] are fulfilled.

Hence, the result follows.

Observe that
∑n

j=1 δhj/n represents the proportion of balls of type h extracted up to n. The
following corollary establishes its relationship with the a.s. limit of {Xn}.

Corollary 3. In the conditions of Proposition 2 and assuming that {ϕn} is a sequence of con-
tinuous functions that converges uniformly with the supremum norm to ϕ, then the process {δn}
satisfies that

1

n

n∑
j=1

δj → ϕ(u), a.s.

Proof. Observe that for each h, h = 1, . . . , L, and each j:

E[δhj|Fj−1] = E[E[δhj|Fj−1, ξj]|Fj−1]

= E[ϕhj(Xj−1)|Fj−1]

= ϕhj(Xj−1)

>From the extension of Lévy of the Borel-Cantelli lemma (see, for instance, [7] Corollary
VII-2-6) the convergence

n∑
j=1

δhj

n∑
j=1

ϕhj(Xj−1)

→ 1, a.s. (9)

is established on the set {∑∞
j=1 ϕhj(Xj−1) = ∞} for each h, h = 1, . . . , L.

Moreover, as ϕn converges uniformly to ϕ, for all ε > 0 there exists n1 such that ∀n ≥ n1

and ∀x ∈ ∆L−1 we have that |ϕhn(x) − ϕh(x)| < ε/2. Besides, as ϕ is continuous and, from
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Proposition 2, Xn → u, a.s., there exists n2 such that ∀n ≥ n2 we have that |ϕh(Xn−1) −
ϕh(u)| < ε/2, a.s. Then, ∀n ≥ max{n1, n2} we have the following a.s. inequalities

|ϕhn(Xn−1)− ϕh(u)| ≤ |ϕhn(Xn−1)− ϕh(Xn−1)|+ |ϕh(Xn−1)− ϕh(u)| ≤ ε (10)

Therefore, {ϕn(Xn−1)} converges a.s. to ϕ(u).
As ϕh(u) > 0 for each h, h = 1, . . . , L, then

∑∞
j=1 ϕhj(Xj−1) = ∞ a.s.,

∑n
j=1 ϕhj(Xj−1)/n

converges a.s. to ϕh(u) and the result follows.

§3. Asymptotic results.

In order to obtain inference results for the adaptive design described in section 2, we consider
the urn model of the clinical trial in the conditions of Proposition 2 and assuming that ϕ is
continuous. Given a treatment h and a patient’s level i, the probability distribution of Zn does
not depend on n (see (2) and (3)). We denote

µhi = E[Zn|δhn = 1, ξn = i] and σ2
hi = V ar[Zn|δhn = 1, ξn = i]

Let

ghn =
Thn

Nhn

, h = 1, . . . , L (11)

where

Thn =
n∑

k=1

fh(ξk)Zkδhk, Nhn =
n∑

k=1

δhk, (12)

with fh(i) =
µh0

µhi

, h = 1, . . . , L, i = 0, . . . , K.

In the following proposition we obtain asymptotic results for ghn.

Proposition 4. Consider the urn model of the clinical trial in the conditions of Proposition 2
and assume the conditions of Corollary 3. Let ghn be as in (11), then

ghn → µh0 a.s.

and the random vector
√

n(g1n−µ10, . . . , gLn−µL0) converges in distribution to a multivariate
normal distribution with zero mean vector and a diagonal variance and covariance matrix Σ,
where

Σhh =
Ah

ϕh(u)
, h = 1, . . . , L

and Ah =
∑K

i=0 σ2
hiπi/µ

2
hi.

Proof. >From Corollary 3 we have that Nhn =
∑n

k=1 δhk diverges a.s. for h = 1, . . . , L.
Besides, Nhn/n→ ϕh(u), a.s. Then, using martingale techniques as in Proposition 3.1 and 3.2
in [6], the result follows.
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Example. We consider an adaptive design for a clinical trial where the allocation rule is given
by ϕh(n+1)(Xn) = αn + (1 − Lαn)Xhn for h = 1, . . . , L, {αn} is a sequence of real numbers
such that 0 ≤ αn ≤ 1/L, αn → α as n →∞ and, therefore, 0 ≤ α ≤ 1/L. It is immediate that
ϕn converges uniformly to ϕ, where ϕh(x) = α + (1− Lα)xh, h = 1, . . . , L. It is not difficult
to see that Fn+1 in the Proposition 1 is

Fn+1(x) = x([αn1
t1 + (1− Lαn)I]H − sI),

and then, from Proposition 2, the process {Xn} converges to u and the proportion of times that
treatment h is applied converges to ϕh(u), where u is the normalised left eigenvector associated
to the eigenvalue s of the matrix C = [α1t1 + (1 − Lα)I]H , provided that C is irreducible.
This occurs when H is irreducible. In fact, if α = 0, then C = H and u is the eigenvector of H
associated to s. If α = 1/L, then u is the eigenvector of (1/L)1t1H associated to s, namely,
u = 1/(Ls)(β1, . . . , βL), where βj =

∑L
i=1 hij .

A particular case of this situation, when αn = α for each n and the response is dichotomous,
can be seen as example 4.2 in [6].
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