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OVERDISPERSION AND POISSON-TWEEDIE

EXPONENTIAL DISPERSION MODELS

C.C. Kokonendji, C.G.B. Demétrio and S. Dossou-Gbété

Abstract. We investigate two sets of overdispersed models when Poisson distribution does
not fit to count data: a class of Poisson mixture with Tweedie mixing distributions and
a class of exponential dispersion models which have a unit variance function of the form
µ + µp, where p is a real number. These two classes generalize the negative binomial
distribution which is classically used in the framework of regression models for count
data when overdispersion results in a lack of fit of the Poisson regression model. Some
properties are then studied and discussed.
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§1. Introduction

When Poisson distribution does not fit to count data and the observed dispersion is greater than
the predicted dispersion, the negative binomial distribution is often used to overcome this lack
of fit, the so-called overdipersion. It is well known that negative binomial distribution can be
understood as a Poisson mixture with gamma mixing distribution. Hougaard et al. [5] have
considered a large family of mixture distributions, including the inverse Gaussian mixture dis-
tribution, to improve significantly the fitness to certain data. We will call the Poisson-Tweedie
class a completed set of these distrbutions.

It is common use to handle overdispersion in regression models for count data by replacing
the initial Poisson regression model by a model where the mean-variance function has a more
general form. Hinde and Demétrio [3, page 14] propose for overdispersed count data the use
of the variance function (or variance as non constant function of the mean)

Vφ,p(m) = m + φmp, (1)

where φ > 0 and p ∈ R fixed, which is also a generalization of negative binomial variance
function with p = 2. To make short that the Hinde-Demétrio class, we here call the Hinde class
of “exponential dispersion models” (a term to be made precise) all distributions corresponding
to variance function (1). Note that overdispersion can be measured by the variance inflation
factor Vφ,p(m)/m = 1 + φmp−1, which is 1 for the Poisson distribution. Obviously, when φ
goes to 0 in (1) the corresponding limit distribution must be a Poisson.
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The aim of this work is to provide a complete identification of both the Poisson-Tweedie
and the Hinde exponential dispersion models from their variance functions. In section 2, we
briefly review some basic properties of exponential dispersion models and, in particular, of
the Tweedie class with variance function φmp. In section 3, we describe the possible Poisson
mixture distributions with a Tweedie for obtaining the Poisson-Tweedie class. In section 4, we
first characterize the Hinde class and we then compare it to the Poisson-Tweedie class. The last
section is devoted to some discussion about statistical inference and some concluding remarks
on the Hinde class.

§2. Exponential dispersion models

Exponential dispersion models are important statistical models, particularly for the treatment
of generalized linear models (McCullagh and Nelder [15]). They have a number of important
mathematical properties, which are relevant in pratice, and they include several well-known
families of distributions as special cases, giving a convenient general framework. The reader
can be referred to Jørgensen [7] for more details or to the contribution of Muriel Casalis in
Chapter 54 of Kotz et al. [11] for a recent panorama of the subject.

Let θ ∈ Θ and λ ∈ Λ, where Θ is generally an interval with interior (intΘ) non-empty of
R and Λ a subset of (0,∞). A random variable X from an exponential dispersion distribution
with parameters θ and λ, denoted X ∼ ED(θ, λ), if its density or mass function can be written
as

c(x; λ) exp{θx− λK(θ)}, x ∈ S ⊆ R. (2)

The associated (additive) exponential dispersion model (EDM) is the set of probabilities
ED(θ, λ) with θ ∈ Θ and λ ∈ Λ. [Note here that the reproductive version of X ∼ ED(θ, λ) is
given by Z = X/λ ∼ ED∗(µ; σ2), where µ = K ′(θ) and σ2 = 1/λ.]

For fixed λ > 0, the EDM is a natural exponential family (NEF). Therefore θ is the canon-
ical parameter and λ the index parameter. These parameters satisfy the following convolution
formula: ED(θ, λ1) ∗ED(θ, λ2) = ED(θ, λ1 + λ2). So the EDM is closed under convolution
and {1, 2, · · ·} ⊆ Λ. Also, the model is infinitely divisible if and only if Λ = (0,∞).

The cumulant function K in (2) is such that, if ν is this reference measure (e.g., Lebesgue
or counting or σ-finite and positive) on R then

K(θ) = ln

∫
R

eθxc(x; 1) dν(x).

Therefore K is strictly convex on intΘ and, for a random variable X ∼ ED(θ, λ), one has its
expectation and variance:

E(X) = λK ′(θ) and Var(X) = λK ′′(θ), (3)

where K ′(θ) and K ′′(θ) are, respectively, the first and second derivatives of K at the point θ.
From (3) with λ = 1, the function V defined on the domain M = K ′(intΘ) such that

K ′′(θ) = V {K ′(θ)}

is called unit variance function. As for the NEFs, the unit variance function characterizes the
EDM. Numerous properties have been established in the literature and, for many cases, the unit
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variance function presents a simpler expression than the density (e.g., Letac and Mora [13]).
The role of the unit variance function in data fitting should be to identify the class of adequate
distributions.

The reparametrization µ = K ′(θ) (unit mean) permits us to write the EDM as follows:
{ED(µ, λ); µ ∈ M, λ ∈ Λ}. It is sometimes considered the reparametrization of the EDM by
the mean m = E(X) = λ K ′(θ). From (3) the unit variance function V provides the variance
Vλ = Var(X) of X ∼ ED(θ, λ) in terms of m, called variance function and expressed as
follows: Vλ(m) = λV (m/λ), for all m ∈ λM . Before giving a basic example of EDMs with
power variance functions, let us recall that the discrete overdispersed EDM compared to the
Poisson distribution must satisfy

V (µ) > µ, (4)

for all µ > 0, where V (µ) = µ is the unit variance function of the Poisson model (e.g., Jourdan
and Kokonendji [9]).

2.1. Tweedie EDMs

A complete description of the EDMs with power unit variance functions

V (µ) = µp, p ∈ (−∞, 0] ∪ [1,∞), (5)

is given by Jørgensen [7] where, for p = ∞ the corresponding unit variance function takes the
exponential form V (µ) = exp(βµ) , β �= 0. This class called the Tweedie class is introduced
by Tweedie [16]; see also Bar-Lev and Enis [1]. Instead of p, it is also convenient to introduce
the index parameter α of stable distribution, defined by

(p− 1)(1− α) = 1. (6)

According to the above notations, we can denote by Twp(θ, λ) any distribution of this class
where p and α are connected by (6), λ ∈ (0,∞) = Λ for all p of (5), and θ ∈ Θp with

Θp =

⎧⎪⎪⎨⎪⎪⎩
R for p = 0, 1
[0,∞) for p < 0 or 0 < p < 1
(−∞, 0) for 1 < p ≤ 2
(−∞, 0] for 2 < p <∞.

(7)

Thus, for s ∈ Θp − θ, the Laplace transform E(esX) of X ∼ Twp(θ, λ) is given by

Gp(s; θ, λ) =

⎧⎨⎩
exp{λ(1−p)αθα

(2−p)
[(1 + s/θ)α − 1]} for p �= 1, 2

(1 + s/θ)−λ for p = 2
exp{λeθ(es − 1)} for p = 1.

(8)

As shown in Table 1, the Tweedie class includes several well-known families of distribu-
tions amongst which one may the inverse-Gaussian distributions with p = 3 or α = 1/2. Ob-
serve that the extreme stable distributions (p < 0) are not “steept’t’ and only one distribution,
named Poisson (p = 1), is discrete.

Let us conclude this section by precising the notion of steepness. If M = Ω, where Ω
denotes the interior of the convex hull of the support S of EDM, the model is then said to be
steep. From here to the end, an EDM is always assumed to be steep.
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Table 1: Summary of Tweedie EDMs (Jørgensen [7])

Distribution p α M S
Extreme stable p < 0 1 < α < 2 (0,∞) R
Normal p = 0 α = 2 R R
[ Do not exist ] 0 < p < 1 2 < α <∞
Poisson p = 1 α = −∞ (0,∞) N
Compound Poisson 1 < p < 2 α < 0 (0,∞) (0,∞)
Gamma p = 2 α = 0 (0,∞) (0,∞)
Positive stable p > 2 0 < α < 1 (0,∞) [0,∞)

§3. Poisson-Tweedie EDMs

Before showing the form of its (unit) variance function, let us precise what we call the Poisson-
Tweedie class of EDMs.

Let X be a non-negative random variable following Twp(θ, λ) an element of Tweedie class.
If a discrete random variable Y is such that the conditional distribution of Y given X is Poisson
with mean X , then the EDM generated by the distribution of Y is of the Poisson-Tweedie class;
and we can denote by PTwp(θ, λ) any distribution of this class. That means that the support S
of X ∼ Twp(θ, λ) must be positive for defining the following individual probabilities of Y :

Pr(Y = y) =

∫ ∞

0

e−xxy

y!
Twp(θ, λ)(dx), y = 0, 1, · · · . (9)

Hence, from Table 1, these Poisson mixtures are possible only for p ≥ 1 for which some basic
properties are described by Hougaard et al. [5, Theorem 1] except for p = 1 or α = −∞. We
here present the main results of Poisson-Tweedie distributions (9).

Theorem 1. Let Y ∼ PTwp(θ, λ) defined by (9), where the parameter set is λ > 0, θ ∈ Θp

given by (7), and p ≥ 1 or α ∈ [−∞, 1) from (6). (i) If Y1, · · · , Yn are independent, with
Yi ∼ PTwp(θ, λi), i = 1, · · · , n, then Y1 + · · · + Yn follows PTwp(θ, λ1 + · · · + λn). The
distribution PTwp(θ, λ) is infinitely divisible. (ii) The Laplace transform of Y is

E(esY ) =

⎧⎨⎩
exp{λ(1−p)α

(2−p)
[(es − 1 + θ)α − θα]} for p �= 1, 2

[(es − 1 + θ)/θ]−λ for p = 2
exp{λ[exp(es − 1 + θ)− eθ]} for p = 1,

(10)

for s ∈ Θp − θ. For p = 1, it is a Neyman type A distribution; for p = 2, it is a negative
binomial distribution; and, for p = 3, it is the Sichel or Poisson-inverse Gaussian distribution.
(iii) The distribution PTwp(θ, λ) is overdispersed with respect to the Poisson distribution for
all p ≥ 1. (iv) The distribution PTwp(θ, λ) is unimodal for p ≥ 2. (v) The unit variance
function of the EDM generated by Y ∼ PTwp(θ, 1) is exactly

VPT (µ) = µ + µp exp{(2− p)Φ(µ)}, µ > 0, (11)

where Φ(µ) denotes the inverse of the increasing function s �→ d{ln E(esY )}/ds.
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Proof. (i) It is deduced from the convolution formula of EDM.
(ii) Since the Laplace transform of a Poisson with mean X is exp{X(es − 1)}, from (9)

and (8) we have
E(esY ) = E(E(esY |X)) = Gp(e

s − 1; θ, λ);

and the remainder becomes trivial.
(iii) Using (ii) for the cumulant generating function K(s) = ln E(esY ), the rth cumulant

of Y ∼ PTwp(θ, λ) is given by κr = drK(0)/dsr. Therefore, the first two cumulants of Y ,
respectively, are given by

κ1 = E(Y ) =

⎧⎨⎩
λα(1−p)α

(2−p)
θα−1 for p �= 1, 2

−λθ−1 for p = 2
λeθ for p = 1,

κ2 = Var(Y ) =

⎧⎨⎩
λα(1−p)α

(2−p)
θα−1[1 + (1− p)−1θ−1] for p �= 1, 2

λ(1− θ)θ−2 for p = 2
2λeθ for p = 1.

It follows that the index of dispersion (ID = κ2/κ1) of Y verifies ID > 1 for all θ ∈ Θp, λ > 0
and p ≥ 1, proving (iii).

(iv) See Theorem 1 (f ) of Hougaard et al. [5] with α ∈ [0, 1].
(v) Let K(s) = ln E(esY ) for Y ∼ PTwp(θ, 1). From (ii) with λ = 1 and using (6) to

simplify, the first derivative of K(s) is

µ = K ′(s) =

⎧⎨⎩
es[(1− p)(es − 1 + θ)]α−1 for p �= 1, 2
−es(es − 1 + θ)−1 for p = 2
es exp{es − 1 + θ} for p = 1,

and the second derivative of K(s) may be expressed as follows:

VPT (µ) = K ′′(s) =

⎧⎨⎩
K ′(s) + e2s[(1− p)(es − 1 + θ)]α−2 for p �= 1, 2
K ′(s) + [K ′(s)]2 for p = 2
K ′(s) + esK ′(s) for p = 1.

For p �= 1, 2 we can also write

K ′′(s) = K ′(s) + e2s

[
K ′(s)

es

]α−2
α−1

.

Since (6) implies (α− 2)/(α− 1) = p, the expression given in (11) is easily obtained.

The probability function of Y ∼ PTwp(θ, λ) is given by Hougaard et al. [5] which is
the key difficulty in applying this family of models. Some other properties are discussed in
the same paper such that the skweness and the bimodality, indeed trimodality. For p = 1 we
can refer to Johnson et al. [6, pages 368-] for obtaining some properties on the Neyman type
A distribution, which is therefore both a Poisson mixture of Poisson distributions, and also a
Poisson-stopped sum of Poisson distributions. The Poisson-Tweedie EDMs can be summarized
as in Table 2.

Note however that the conditional distribution of Y given X by (9) is not the same of that
proposed by Jørgensen [7, page 166] which is given by Y |X = x follows Poisson with mean
xeη, where η ∈ R is an additional parameter. Thus, the result in terms of unit variance function
is slightly different.
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Table 2: Summary of Poisson-Tweedie EDMs

Distribution p α M S
[ Do not define ] p < 1 1 < α <∞
Neyman type A p = 1 α = −∞ (0,∞) N
Poisson-compound Poisson 1 < p < 2 α < 0 (0,∞) N
Negative binomial p = 2 α = 0 (0,∞) N
Poisson-positive stable p > 2 0 < α < 1 (0,∞) N
Poisson-inverse Gaussian p = 3 α = 1/2 (0,∞) N

§4. Hinde EDMs

In this section, we characterize the Hinde class which is the set of EDMs with unit variance
function of the “simple” form

VH(µ) = µ + µp, µ ∈ MH , (12)

where p ∈ R and, then, we compare it to the Poisson-Tweedie class (11). The EDM correspond-
ing to (12), if it exists for a given p, is denoted Y ∼ Hp(µ, λ). For all integers p ∈ {1, 2, · · ·},
the models Hp(µ, λ) exist and they are infinitely divisible by using the Bar-Lev criterion de-
scribed in Letac and Mora [13, Corollary 3.3], because we can write VH(µ) = µ∆(µ) on
MH = (0, r), where ∆ is a polynomial with non-negative coefficients and r ∈ (0,∞].

We now state the result of characterization.

Theorem 2. Let p ∈ R. The function (12): µ �→ VH(µ) = µ+µp, defined on a suitable domain
Mp = MH corresponds to a unit variance function of a discrete (steep) EDM when

p ∈ {0} ∪ [1,∞), (13)

with M0 = (−1,∞) and Mp = (0,∞) for p ≥ 1; and the domain Θp of the canonical
parameter is given by (7). In particular, if p = 0 the model H0(µ, λ) is a positive-translated
Poisson; if p = 1 the model H1(µ, λ) is a scaled Poisson; if p = 2 the model H2(µ, λ) is
negative binomial; if p = 3 the model H3(µ, λ) is strict arcsine (Kokonendji and Khoudar,
2004).

Before embarking on the proof, let us recall that, from (4), the Hinde class (12) is the set of
overdispersed EDMs compared with the Poisson distribution, as well as the Poisson-Tweedie
class (11). As consequence to previous results, we have the following comparison result. It
means that only negative binomial H2(µ, λ) of the Hinde class is interpreted as PTw2(µ, λ) of
the Poisson-Tweedie class and, for fixed p ≥ 1 and λ > 0, each Hp(µ, λ) can be approximated
by PTwp(µ, λ) when µ goes to∞. For this reason we can call the “Hinde-compound Poisson”
(resp. “Hinde-positive stable”) EDMs for 1 < p < 2 (resp. p > 2) in (12).

Proposition 3. Let H = {Hp(µ, λ); p ∈ R} be the Hinde class and PT = {PTwp(µ, λ); p ∈
R} the Poisson-Tweedie class. Then: (a) H ∩ PT = {H2(µ, λ) = PTw2(µ, λ)}. (b) For fixed
p ≥ 1, VPT (µ) ∼ VH(µ) as µ →∞.
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Proof. Since the unit variance function characterizes the EDM, letting p = 2 in (11) we easily
deduce the result (a). For the part (b) we can assume p �= 2 from (a) and, then, we have
from (11) that µ → ∞ implies s = Φ(µ) → 0. From the Taylor expansion of the function
s �→ exp{(2− p)s} in a neighborhood of s = 0, the result is easily obtained.

For the proof of Theorem 2 we need the two following lemmas. The first is called an
“impossibility criterion” to exclude case 0 < p < 1, and the second is related to the steepness.

Lemma 4. There are no EDM with M = (0,∞) and unit variance function V (µ) ∼ µγ as
µ → 0 for γ ∈ (0, 1).

Proof. If V (µ) ∼ µγ as µ → 0, then

θ = ψ(µ) = θ0 +

∫ µ

0

dt

V (t)

is left-bounded. Now, V (µ) → 0 as µ → 0 implies that the generating measure ν is con-
centrated on [0,∞) (see, e.g., Letac and Mora [12, Theorem 2.3 (2)]). Hence, the canonical
parameter domain Θ(ν) is not left-bounded, which yields a contradiction.

Lemma 5 (Jørgensen et al. [8]). Let P = {ED(θ, 1) ; θ ∈ Θ } be a NEF with variance
function V on M and support S. If inf S = 0, then: (i) inf M = 0; (ii) lim

µ→0
V (µ) = 0; (iii)

lim
µ→0

V (µ)/µ = c, where c = inf{S \ {0}}.

Note that c = 0 for continuous distributions, and c > 0 for distributions which have an
atom at zero; in particular, c = 1 for discrete integer valued distributions.

Proof of Theorem 2. We first make an observation based on Theorem 2.3 of Letac and Mora
[12]. Since VH must be an analytic positive function on the domain Mp = (a,∞), we have that
both VH has no zero in (a,∞) and VH(a) = 0. Thus, we have

Mp =

{
(0,∞) for p �= 0
(−1,∞) for p = 0,

(14)

and, in solving ψ′(µ) = 1/VH(µ) = 1/(µ + µp) that we ignore the arbitrary constants in the
solutions,

ψ(µ) =

⎧⎨⎩
ln(µ)− (p− 1)−1 ln(1 + µp−1) for p �= 0, 1
ln
√

µ for p = 1
ln(1 + µ) for p = 0.

(15)

We now examine the different situations of p ∈ R in (12) from (14).
- Consider case p ∈ {0} ∪ [1,∞). Let θ = ψ(µ) in (15), then we find µ = µ(θ) = K ′(θ) as

follows:

K ′(θ) =

⎧⎨⎩ eθ(1− eθ(p−1))−1/(p−1) for p �= 0, 1
e2θ for p = 1
eθ − 1 for p = 0,
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and, hence (using Maple for p �= 0, 1, 2, 3),

K(θ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

eθ − θ for p = 0
e2θ/2 for p = 1
− ln(1− eθ) for p = 2
arcsin eθ for p = 3

(−1)−1/(p−1)

(p−1)Γ[1/(p−1)]

∞∑
k=0

(1− ekθ(p−1))Γ[k+1/(p−1)]
kΓ(k+1)

for p �= 0, 1, 2, 3,

(16)

for θ ∈ Θ, where the interior of Θ is obtained by using (14) and (15):

intΘ =

⎧⎨⎩
R for p = 0, 1
(0,∞) for p < 0 or 0 < p < 1
(−∞, 0) for 1 < p <∞.

(17)

Since the cumulant generating function (16) is analytic, the domain Θ defined from its interior
(17) coincides to Θp given by (7). Thus, for each p ∈ {0}∪ [1,∞), we define a unique discrete
positive measure generating the corresponding (steep) EDM with unit variance function (12).

- Case 0 < p < 1 is excluded by Lemma 4.
- Finally, let us exclude case p < 0 by steepness criterion. Indeed, by Lemma 5, it suffices

to observe that M = (0,∞) from (14) and limµ→0 V (µ)/µ = limµ→0(1 + µp−1) = ∞. The
proof of Theorem 2 is now complete.

§5. Final remarks

From the unit variance function (12) of the Hinde class, it is easy to point out (graphically)
different situations of overdispersion with respect to the Poisson distribution. The point µ = 1
plays an interesting role for the degree or level of overdispersion which depends on µ < 1 or
µ > 1.

The first behaviour of variance functions of Hinde distributions compared to Poisson pro-
vides a real view to the phenomena of overdispersion. Thus we can find, in order when
µ < 1, positive-translated Poisson (p = 0), scaled Poisson (p = 1), Hinde-compound Pois-
son (1 < p < 2), negative binomial (p = 2) and Hinde-positive stable (p > 2) distributions.
The order changes when µ > 1. Consequently, it is an indicator to choose the adequate class of
distributions. See also Jourdan and Kokonendji [9] for the overdispersed generalized negative
binomial distributions with respect to the negative binomial and, then, to the Poisson distribu-
tions. Let us mention here that the well-known case of Poisson-positive stable (p > 2) families
is the Sichel or Poisson-inverse Gaussian (p = 3) distribution (e.g., Holla [4]; Willmot [17]);
and the known case of Hinde-positive stable (p > 2) families is the strict arcsine (p = 3)
distribution, which is not always unimodal (see Kokonendji and Khoudar [10]).

With respect to the limit cases which are Poisson, scaled Poisson and positive-translated
Poisson, one can illustrate situations that there are no distributions in this class corresponding
to the phenomena. Indeed, for µ < 1 we have the following conclusions: between scaled
Poisson and positive-translated Poisson, there are no EDM corresponding to these variance
functions with 0 < p < 1; above positive-translated Poisson which correspond to p < 0, there
are no steep EDM. The positions change when µ > 1. We must here observe that cases p < 0
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can exist with a support S of distributions containing some negative point or being Z = −N∪N.
Furthermore, when µ goes to∞ the possible limit distribution could be a Poisson.

When the Poisson-Tweedie models PTwp(µ, λ) or the Hinde models Hp(µ, λ) are used in
the case of data set (univariate or regression), the real problem of statistical inference is the
parameter p. If x = (x1, · · · , xn) is an n-independent identically distributed observation from
PTwp(µ, λ) or Hp(µ, λ), it is recommended to use the moment estimate because it is simple
(e.g., Kokonendji and Khoudar [10]) and it can be an initial estimate, for example, in the search
for maximum likelihood estimate (e.g., Hougaard et al. [5]). For example, from (1) and when
φ is fixed or known, we have by the moment method p∗ = ln[(s2

n − xn)/φ]/ ln(xn) ∈ R under
the overdispersion condition s2

n − xn > 0, where xn and s2
n are, respectively, the mean and the

variance from the count data x. However, a profile estimate of p is necessary in this situation.
Finally, as shown by Hougaard et al. [5] in the univariate case, the use of these models could
be interesting in the regression case to unify the negative binomial and the Poisson-inverse
Gaussian regression models (Dean et al. [2]) or the strict arcsine regression model (Marque
and Kokonendji [14]) for a suitable model.
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