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INFERENCE IN THE STOCHASTIC

GOMPERTZ DIFFUSION MODEL WITH

CONTINUOUS SAMPLING

R. Gutiérrez, A. Nafidi and R. Gutiérrez Sánchez

Abstract. In the present paper, we approach the stochastic Gompertz diffusion process
(SGDP) from the point of view of Itô’s stochastic differential equations. The stochastic
model is solved analytically by applying Itô’s calculus and the mean value of the proposed
process is calculated. The parameter estimators are then derived by means of two proce-
dures: the first is used to estimate the parameters in the drift coefficient by the maximum
likelihood principle, based on continuous sampling, and the second procedure approxi-
mates the diffusion coefficient. Finally, a simulation of the process is presented. Thus, a
typical simulated trajectory of the process and its estimators is obtained.
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§1. Introduction

The stochastic diffusion process is of great interest to investigators in many fields, such as
biology, physics, demographics and economics,the process generally being defined by means of
stochastic differential equations. The problem of estimating parameters of the drift coefficient
has received considerable attention in recent years, especially in situations in which the process
is observed continuously. In most cases, the statistical inference is based on approximating the
maximum likelihood methodology, an extensive review of which can be found in Prakasa Rao
[16], while new studies have been published by Bibby and Sorensen [2], Kloeden et al. [9],
Singer [14] and others. A wide variety of stochastic diffusion processes have been described,
both in general and in specific texts, one such being the stochastic Gompertz diffusion process
(SGDP). The deterministic case of this process (the Gompertz growth curve) has been the object
of many studies. A stochastic version of this, as a birth and death process, was introduced by
Pajenshu [15] and Tan [17], and applied by Troynikov [19], Miller et.al [10]. The SGDP
version was applied by Ricciardi [12] in population growth by adding white noise fluctuation
to the intrinsic fertility of a population; it has also been used by Dennis and Patil [4] in ecology
modelling. Finally, we should mention the recent extension of this process by Frank [5] to
the case of SGDP with delay. This paper is organized as follows: in the second section, the
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analytical expression and the mean value of the SGDP are obtained. In the third, the estimators
of the parameters in the drift coefficient are derived by the maximum likelihood principle and
the diffusion coefficient estimator is approximated. The final section presents a simulation of
the process and its parameter estimators.

§2. The model and the mean value of SGDP

2.1. The model

We consider a one-dimensional stochastic differential equation (SDE):

dX(t) = a(t, X(t))dt + b1/2(t,X(t))dWt ; X(0) = x0 (1)

where {Wt, t ∈ [0, T ]} is a one-dimensional Wiener process, with an independent increment
Wt−Ws normally distributed with mean E(Wt−Ws) = 0 and variance Var(Wt−Ws) = t−s,
for t ≥ s, and x0 is a fixed real (x0 ∈ R∗

+). We assume that, for all t ∈ [0, T ], x ∈ (0,∞);
a(t, x) and b(t, x) are functions with values in R, given respectively by

a(t, x) = αx− βx log(x)

b(t, x) = σ2x2

where σ, α and β are real parameters. After substitution, we obtain the following SDE:

dX(t) = (αX(t)− βX(t) log X(t)) dt + σX(t)dWt ; X(0) = x0 (2)

Considering the analytical properties of a(t, x) and b(t, x), it follows that the SDE (2) has a
unique solution {X(t), t ∈ [0, T ]} which is a (0,∞) - valued diffusion process with an initial
value x0, a drift coefficient a(t, x) and a diffusion coefficient b(t, x) (cf. [1]) The process
{X(t), t ∈ [0, T ]} is called a one-dimensional SGDP (known in the literature as the Stochastic
Gompertz Growth Model, cf. [12] and [5])
For β = 0, X(t) is the Lognormal process (cf. [18])
If α = 0, we obtain the Skiadas et al. [13] version of the SGDP.

2.2. Analytic solution of the SGDP

By means of the appropriate transformation of the form Y (t) = eβt log (X(t)), and by using
the Itô rule, the SDE (2) becomes

dY (t) = (γdt + σdWt) eβt

Y (0) = log x0

where γ = α− σ2

2
, by evaluation of the integral, and we find that the solution of the last SDE

has the following form:

Y (t) = log x0 +
γ

β

(
eβt − 1

)
+

∫ t

0

σeβsdWs

Finally, we deduce that the solution of the original SDE (2) is :

X(t) = exp
(
log(x0)e

−βt
)
exp

{
γ

β

(
1− e−βt

)}
exp

{
σ

∫ t

0

e−β(t−s)dWs

}
(3)
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2.3. Mean value of the (SGDP)

The mean value of SGDP is given by the following expression:

E(X(t)) = exp
{
log(x0)e

−βt
}

exp

{
γ

β

(
1− e−βt

)}
E
(

exp

{
σ

∫ t

0

e−β(t−s)dWs

})
The random variable in the last expression is normally distributed with mean zero and variance

σ2

∫ t

0

e−2β(t−s)ds, and so its expectation can be calculated using the Gardiner [4] relation

E (exp {Zt}) = exp
{
(1/2)E(Zt

2)
}

where Zt is a zero-Gaussian random process.
Then

E
(

exp

{
σ

∫ t

0

e−β(t−s)dWs

})
= exp

{
σ2

2

∫ t

0

e−2β(t−s)ds

}
After substitution, we obtain the final form of the mean value of SGDP

E (X(t)) = exp
{
log(x0)e

−βt
}

exp

{
γ

β

(
1− e−βt

)}
exp

{
σ2

4β

(
1− e−2βt

)}

§3. Parameter estimation

In this section, two methods are presented to estimate SGDP parameters: the first estimates the
drift parameters α and β by the maximum likelihood principle, and the second approximates
the diffusion coefficient σ2 (the white noise). We first provide a brief review of the theory of
the equivalence of the Radom - Nikodym probability measure induced by one class of diffusion
process.

3.1. Equivalence of the Radom - Nikodym probability measure

Here, we restrict our attention to the one-dimensional diffusion process defined by a class of
SDE (1). We assume that this equation can be written in the following form:

dXt = At(Xt).θdt + Bt(Xt)dWt ; 0 ≤ t ≤ T (4)

where the parameter θ ∈ Rk, At is k- dimensional vector and Bt is R- valued depending only
on the sample path up to the given instant. We assume that equation (4) has a unique solution
for every θ. Let CT be the set of continuous functions f: [0, T ] → R and let BT be the σ-
algebra generated by the sets :

AB,t = {f ∈ CT ; f(t) ∈ B; t ∈ [0, T ]; B ∈ B}

where B is the σ-algebra of Borel in R
Pθ denotes the probability measure induced in the measurable space (CT ,BT ) by the dif-

fusion process solution of (4), if we denote the observed trajectory by XT
0 , then the following
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result ensures that the probability measures Pθ for all θ are equivalent and gives us an expres-
sion for the Radom - Nikodym derivative.

Proposition
Let θ0 denote a fixed value of the parameter; the probability measures Pθ and Pθ0 for all θ are
equivalent and

dPθ

dP θ0

(XT
0 ) = exp

{
(θ − θ0)

∗VT −
1

2
(θ − θ0)

∗JT (θ + θ0)

}
where VT is the following k- dimensional vector:

VT =

∫ T

0

A∗
t (Xt)(Bt(Xt)Bt(Xt))

−1dXt (5)

JT is the k × k- matrix:

JT =

∫ T

0

A∗
t (Xt)(Bt(Xt)Bt(Xt))

−1At(Xt)dt (6)

where the star denotes the transpose.
For the proof we refer reader to Prakasa Rao [16]

3.2. Maximum likelihood principle

Suppose we continuously observe a trajectory of a process which we know solves (5) in the
interval [0, T ], we seek to infer the true value of the parametric vector θ. For this purpose, let
us consider the likelihood function

T (XT
0 , θ) =

dPθ

dP θ0

(XT
0 ) = exp

{
(θ − θ0)

∗VT −
1

2
(θ − θ0)

∗JT (θ + θ0)

}
The estimator obtained by maximizing the equation is the following

VT − JT θ̂T = 0

and from the last equation, it is obtained that, when it exists, the desired estimator

θ̂T = JT
−1VT (7)

which can be observed is independent of θ0.

3.3. Estimation of drift parameters

SDE (2) can be written in the following vectorial form:

dXt = At(Xt).θdt + Bt(Xt)dWt

where:
θ∗ = (α,−β) , At(Xt) = (Xt, Xt log(Xt)) and Bt(Xt) = σXt (8)
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The random matrix JT is a 2× 2-matrix and can be obtained by inserting equation (8) into (6)

JT =
1

σ2

⎛⎝ T
∫ T

0
log(Xt)dt∫ T

0
log(Xt)dt

∫ T

0
log2(Xt)dt

⎞⎠
The random vector VT in this case is 2-dimensional and can be obtained by substituting equation
(8) into (5)

V ∗
T =

1

σ2

(∫ T

0

dXt

Xt

,

∫ T

0

log(Xt)

Xt

dXt

)
(10)

After some calculation (not shown), we obtain the expressions of the estimators

α̂T =

(∫ T

0
log2(Xt)dt

)(∫ T

0
dXt

Xt

)
−
(∫ T

0
log(Xt)dt

)(∫ T

0
log(Xt)

Xt
dXt

)
T
∫ T

0
log2(Xt)dt−

(∫ T

0
log(Xt)dt

)2
β̂T =

(∫ T

0
log(Xt)dt

)(∫ T

0
dXt

Xt

)
− T
(∫ T

0
log(Xt)

Xt
dXt

)
T
∫ T

0
log2(Xt)dt−

(∫ T

0
log(Xt)dt

)2
The Itô integrals in expression (10) can be calculated by using the Itô formula, hence∫ T

0

dXt

Xt

= log

(
XT

X0

)
+

σ2

2
T∫ T

0

log(Xt)

Xt

dXt =
1

2

(
log2(XT )− log2(x0)

)
− σ2

2
T +

σ2

2

∫ T

0

log(Xt)dt

The resulting maximum likelihood estimators then give

α̂T =(
log
(

XT

x0

)
+ Tσ2

2

) ∫ T

0
log2(Xt)dt− σ2

2

(
log2(XT )−log2(x0)

σ2 − T +
∫ T

0
log(Xt)dt

) ∫ T

0
log(Xt)dt

T
∫ T

0
log2(Xt)dt−

(∫ T

0
log(Xt)dt

)2
β̂T =

(∫ T

0
log(Xt)dt

)
(log(XT )− log(x0))− T

2

(
log2(XT )− log2(x0)− Tσ2

)
T
∫ T

0
log2(Xt)dt−

(∫ T

0
log(Xt)dt

)2
3.4. Estimation of the noise coefficient

The coefficient σ can be estimated by using an extension of the procedure proposed by Ches-
ney and Elliot [3] for estimating the coefficient diffusion for a linear SDE with multiplicative
noise to the case of a non linear SDE with multiplicative noise. The method is the same as in
Katsamaki and Skiadas [8] and the resulting estimator has the following form:

σ̂T =
1

T − 1

T∑
t=2

| Xt −Xt−1 |
(XtXt−1)

1
2
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§4. Simulation

In order to obtain an illustration of this model, we simulate the SGDP in [0, T ]. We consider
equidistant time discretizations of the interval [0, T ], with time points tn = nh and step size
h = T/nT for an integer nT , and n = 0, 1, . . . , nT . Assuming parameters values α = 2, β = 1,
σ = 1, T = 2000, h = 2−4, starting at x0 = 2, and approximating the Riemann integral by
a trapezoid formula, a typical trajectory of the process is obtained using MATLAB package.
Estimates for α, β and σ over [0, T ], as well as the trajectory generated restricted to the initial
segment [0, 10], are displayed in (Figure 1).

Figure 1: A typical trajectory of the SGDP and evolution of the estimates calculated form it for
the parameters α, β and σ.
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