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MAXIMUM LIKELIHOOD ESTIMATION IN

MULTIVARIATE LOGNORMAL DIFFUSION

PROCESSES WITH A VECTOR OF

EXOGENOUS FACTORS

R. Gutiérrez, R. Gutiérrez Sánchez and A. Nafidi

Abstract. In this paper we consider a new model of multivariate lognormal diffusion pro-
cess with a vector of exogenous factors such that each component exclusively affects the
respective endogenous variable of the process. Starting from the Kolmogorov differential
equations and Ito’s stochastics equation of this model, its transition probability density is
obtained. A discrete sampling of the process is assumed and the associated conditioned
likelihood is calculated. By using matrix differential calculus, the maximum likelihood
matrix estimators are obtained and expressed in a computationally feasible form. This
model, an extension of previously studied lognormal diffusion processes ([1],[2],[3]), ex-
tends the possibility of applications of lognormal dynamic modelling in Economics, Pop-
ulation Growth, Volatility,etc.
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§1. Introduction

Lognormal, logistic and Gompertz stochastic diffusion processes have been widely used to
model exponential growth phenomena in economics ([3];[10]), biology ([12]) and other fields.

The lognormal process, moreover, is playing an increasingly important role in fields such
as nuclear and mechanical engineering ([9]); [11]) and astrophysics ([15]). Recently, the log-
normal process was applied in the modelling of satellite and cellphone-based communication
phenomena, in the form of the Nakagami-lognormal process ([1]);[14]);[2])
In general, these applications consider homogeneous diffusion processes; their infinitesimal
moments do not depend on time, but only on the system states. This fact limits their range
of applications and prevents the consideration of external influences on the variables that are
modelled (endogenous variables). Such external influences can be modelled by exogenous
variables or factors that affect the trend and the infinitesimal moments of the process (see [14]
with respect to the lognormal case).
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Exogenous factors are functions of time that are known and which vary externally to the
system. This allows the possibility of controlling the behaviour of the system and of obtaining
inferential results to improve the statistical fit of the processes to real data.

The study of lognormal diffusion processes with exogenous factors has been widely ad-
dressed in recent years, concerning two main fields of interest, namely first-passage problems
and statistical inference. With respect to the first of these, interesting results have been ob-
tained by [5], by [7] and by [8], in the case of univariate processes. In the case of statistical
inference, studied at the level of multivariate lognormal processes with multiple exogenous fac-
tors common to all the endogenous variables, and for which discrete sampling is utilised, with
the corresponding computational treatment, see for example [4] and [6].

In this context of modelling by lognormal diffusions affected by exogenous factors, this
paper proposes a new multivariate model in which each endogenous variable can be affected
by exogenous factors “ad hoc”, that are different for each endogenous variable. By this pro-
cedure we seek to achieve a model that is more flexible for use in real applications and with
which the results of statistical inference could be obtained. In the following section, this model
is described using the Kolmogorov equations, and the maximum likelihood estimation of its
matrix parameters is developed.

§2. Definition of the model

By means of the Kolmogorov equations, we define a model of the multidimensional lognormal
diffusion process with two parameters and an exogenous vector, such that each component of
this vector affects the corresponding endogenous variable of the infinitesimal trend of the pro-
cess.

Let {X(t); t0 ≤ t ≤ T} be a Markov process with values in Rk, with trajectories that are
almost certainly continuous and for which the transition probability is given by

P (y, t/x, s) = P{X(t) = y/X(s) = x}

with X(t) = (Xt1, . . . , Xtk), X(s) = (Xs1, . . . , Xsk)

and x and y are two k-dimensional vectors.

Assume the following conditions:

i)

lim
h→0

1

h

∫
|y−x|>ε

P (dy, t + h/x, t) = 0.

ii)

lim
h→0

1

h

∫
|y−x|≤ε

(y − x)P (dy, t + h/x, t) = b(x, t), with
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b(x, t) =

⎛⎜⎜⎜⎝
(α1 + γ1g1(t))x1

(α2 + γ2g2(t))x2
...

(αk + γkgk(t))xk

⎞⎟⎟⎟⎠ ,

where, for i = 1; . . . , k, gi(t) is a continuous function in [t0, T ].

iii)

lim
h→0

1

h

∫
|y−x|≤ε

(y − x)(y − x)′P (dy, t + h/x, t) = [Diag(X)]A[Diag(X)]′,

where A = (aij)1≤i,j≤k is a symmetric, non negatively defined matrix with aij > 0, for
i,j=1,2,. . . ,k; y

Diag(X) =

⎛⎜⎝ x1 · · · 0
...

. . .
...

0 · · · xk

⎞⎟⎠
iv) The higher order infinitesimal moments are null.

Under the above conditions and for certain differentiability conditions of P = P (y, t/x, s),
we obtain the backward and forward Kolmogorov equations, namely:

∂p

∂t
=

1

2

k∑
i,j=1

aij
∂2(yiyjp)

∂yi∂yj

−
k∑

i=1

(αi + γigi(t))
∂(yip)

∂yi

∂p

∂s
= −1

2

k∑
i,j=1

aijxixj
∂2p

∂xi∂xj

−
k∑

i=1

(αi + γigi(s))xi
∂p

∂xi

in which p = p(y, t/x, s), is the conditioned transition density, with the initial solution

p(y, t/x, t) = δ(y − x)

The common solution to these equations is

p(y, t/x, s) =
[(

Πk
i=1yi

)
(2π)k/2(t− s)k/2|A|1/2

]−1
exp

{
− 1

2(t− s)
Q

}
with Q taking the following quadratic form

Q = (log(y)− log(x)− β(t− s)− ΓG(t))′A−1 ×
×(log(y)− log(x)− β(t− s)− ΓG(t))

where,

Γ =

⎛⎜⎜⎜⎝
γ1 0 · · · 0
0 γ2 · · · 0
...

...
. . .

...
0 0 · · · γk

⎞⎟⎟⎟⎠
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G(t) =

(∫ t

s

g1(r)dr,

∫ t

s

g2(r)dr, . . . ,

∫ t

s

gk(r)dr

)′
and

β =

(
α1 −

1

2
a11, . . . , αk −

1

2
akk

)′
= α− 1

2
diag(A)

with α = (α1, α2, . . . , αk)
′ and diag(A) is the k-vector formed by the elements of the diagonal

of A.

§3. Maximum-likelihood estimation of the process parameters

3.1.

Let the following notation describe the transition density function of the above process:

B = (β; Γ) y vt,s =

(
t− s

G(t, s)

)
; B =

⎛⎜⎝ β1 γ1 0 0
... 0

. . . 0
βk 0 0 γk

⎞⎟⎠
In terms of B and vt,s the transition density is written as:

f(y, t/x, s) =

[
(

k∏
i=1

yi)(2π)k/2(t− s)k/2|A| 12
]−1

exp

{ −Q

2(t− s)

}

where

Q = (lg y − lg x−Bvt,s)
′ A−1 (lg y − lg x−Bvt,s))

Therefore, this transition density corresponds to a log-normal k-dimensional function with pa-
rameters lg x−Bvt,s and (t-s)A, that is:

Xt/Xs = x → Λk [lg x−Bvt,s; (t− s)A]

The parameters to be estimated are β, ΓandA ór in matrix terms, A and B. The problem arising
is that matrix B has structural zeros. To avoid this difficulty occurring in the subsequent calcu-
lation of the maximum likelihood estimators, it is necessary to introduce a parametric matrix
that does not contain any zeros. Let:

γ =

⎛⎜⎝ γ1
...

γk

⎞⎟⎠ ; ∆ = (β; γ) =

⎛⎜⎝ β1, γ1
...

...
βk, γk

⎞⎟⎠
such that ∆ contains all the non-null parameters of matrix B and contains no structural zeros.
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3.2.

It is useful to determine a relation between the matrices B and ∆, one that can be utilised

extensively in calculating the estimators. It can be shown that:

B =
k∑

j=1

Ejj∆H ′
j

In fact:

vec(B) =

(
β

vec(Γ)

)
=

(
I 0
0 Dik

)(
β
γ

)
=

(
I 0
0 Dik

)
vec(∆)

where

Dik =
k∑

j=1

uj ⊗ Ejj;

(
I 0
0 Dik

)
=

k∑
j=1

(e1; ej+1)⊗ Ejj

using Hj to describe (e1; ej+1) we then obtain:

vec(B) =
k∑

j=1

(Hj ⊗ Ejj)vec(∆) =
k∑

j=1

vec(Ejj∆H ′
j) = vec(

k∑
j=1

Ejj∆H ′
j)

which proves the relation stated above. Moreover, let:

T =

(
I 0
0 Dik

)
This box matrix with dimensions (k x k) for the two in the first row and (k2 x k) for those in the
second, is full rank by columns, such that:

Tg = (T ′T )−1T ′ = T ′

and T can be expressed as:

T =

( ∑k
j=1 Ejj 0

0
∑k

j=1 uj ⊗ Ejj

)
=

k∑
j=1

(
1 0
0 uj

)
⊗ Ejj =

k∑
j=1

Hj ⊗ Ejj

3.3.

Parameters A and B of the process must now be estimated by maximum likelihood. The objec-
tive is to construct the likelihood associated with the diffusion process, which is achieved, in
Markov processes, by means of transition densities.
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1. The process is considered to be observed by discrete sampling, that is, we observe the
process at instants t1, t2, . . . , tn, thus obtaining the sample Xt1 , Xt2 , . . . , Xtn of values of
the process at these instants. The process is k-dimensional, and therefore, Xt1 , Xt2 , . . . , Xtn

are k-dimensional vectors:
Xt1 = (Xt1,1; . . . ; Xt1,k)

′

and we write x1, x2, . . . , xn and in general xα, for α = 1, . . . , n with xα representing the
k-dimensional vector of the values observed.

2. We consider the transition density values of the process between each two consecutive
instants, assuming that, with a probability of 1, the value at t1 is Xt1 = x1, that is:
P [Xt1 = x1] = 1
P [Xt2 = x2/Xt1 = x1]
P [Xt3 = x3/Xt2 = x2]
...
P [Xtα = xα/Xtα−1 = xα−1]
...
P [Xtn = xn/Xtn−1 = xn−1]

The conditioned likelihood function takes the form

L(x1, . . . , xn/B, A) = P [Xt1 = x1]P [Xt2 = x2/Xt1 = x1] . . . P [Xtn = xn/Xtn−1 = xn−1] =

n∏
α=1

[
(

k∏
i=1

xαi)(2π)k/2(tα − tα−1)
k/2|A|1/2

]−1

×

exp

[
− 1

2(tα − tα−1)
[lg xα − lg xα−1 −Bvα]′A−1[lg xα − lg xα−1 −Bvα]

]
NOTE: P [Xtα = xα/Xtα−1 = xα−1] is obtained from P [Xt = y/Xs = x] with t → tα,
s → tα−1; y → xα, x → xα−1 and moreover vα = vα,α−1 and xαi is the i-th component of xα,

xα =

⎛⎜⎝ xα1
...

xαk

⎞⎟⎠ •

The above conditioned likelihood can, in turn, be written as:

L(x1, . . . , xn/B, A) = (2π)−
(n−1)k

2 |A|−n−1
2

n∏
α=2

[
(

k∏
i=1

xαi)(tα − tα−1)
k/2

]−1

×

exp

[
−1

2

[
(tα − tα−1)

−1/2(lg xα − lg xα−1)−Bvα

]′
A−1 [ ]

]
where vα = (tα − tα−1)

−1/2vα, for α = 2, . . . , n.
Performing the change of variable

z1 = x1
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z2 = (t2 − t1)
−1/2(lg x2 − lg x1)

...

zn = (tn − tn−1)
−1/2(lg xn − lg xn−1)

and applying the theorem of the change of variable:

L(x1, . . . , xn/B, A) ⇒ L(z1, . . . , zn/B, A)

where:

L(z1, . . . , zn/B, A) = (2π)−
(n−1)k

2 |A|−n−1
2 exp

[
−1

2

n∑
α=2

(zα −Bvα)′A−1(zα −Bvα)

]
=

= (2π)−
(n−1)k

2 |A|−n−1
2 exp

[
−1

2
tr

[
A−1

n∑
α=2

(zα −Bvα)(zα −Bvα)′

]]
but

n∑
α=2

(zα −Bvα)(zα −Bvα)′ = (Z −Bv)(Z −Bv)′

with Z = (z2, . . . , zn) of dimension k × (n− 1) and v = (v2, . . . , vn) of dimension (k + 1)×
(n− 1); therefore:

L(x1, . . . , xn/B, A) ⇒ L(z1, . . . , zn/B, A) =

(2π)−
(n−1)k

2 |A|−n−1
2 exp

[
−1

2
tr
[
A−1(Z −Bv)(Z −Bv)′

]]
The next step is to differentiate with respect to parameters A and B. Calculating the differential
of the logarithm of the likelihood function:

lg L(z2, . . . , zn/B, A) = −(n− 1)k

2
lg(2π)− n− 1

2
lg |A| − 1

2
tr[A−1(Z −Bv)(Z −Bv)′]

d lg L(z2, . . . , zn/B, A) = −n− 1

2
tr[A−1(dA)]− 1

2
tr[−A−1(dA)A−1(Z −Bv)(Z −Bv)′]−

−1

2
tr[−A−1(dB)v(Z −Bv)′ − A−1(Z −Bv)v′(dB)′]

expressions that are obtained by applying the following rules of derivation:

1. dA lg |A| = tr[A−1(dA)]

2. dAtr[A−1(Z −Bv)(Z −Bv)′] = tr[−A−1(dA)A−1(Z −Bv)(Z −Bv)′]

3. dBtr[A−1(Z−Bv)(Z−Bv)′] = tr[−A−1(dB)v(z−Bv)′]+ tr[−A−1(Z−Bv)v′(dB)′]
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Thus we have:

d lg L(z2, . . . , zn/B, A) =
1

2
tr
[
A−1(dA)A−1(Z −Bv)(Z −Bv)′ − (n− 1)A−1(dA)

]
+

+
1

2
tr
[
2v(Z −Bv)′A−1(dB)

]
=

=
1

2
V ec′
[
A−1[(Z −Bv)(Z −Bv)′ − (n− 1)A]A−1

]
dV ec(A)+

+V ec′[A−1(Z −Bv)v′]TdV ec(∆)

as V ec(B) = TV ec(∆), where

T =

(
I 0
0 Dik

)
as shown above. Finally, the maximum likelihood method requires d lg L = 0, which implies:

V ec′
[
A−1[(Z −Bv)(Z −Bv)′ − (n− 1)A]A−1

]
dV ec(A) = 0

V ec′
[
A−1(Z −Bv)v′]TdV ec(∆)

We now analyse the solutions to these equations, starting with the second of them. We have:

V ec′[A−1(Z −Bv)v′]T = 0; T ′V ec[A−1(Z −Bv)v′] = 0

k∑
j=1

(Hj ⊗ Ejj)V ec(A−1(Z −Bv)v′) = 0;
k∑

j=1

V ec[Ejj(A
−1(Z −Bv)v′)Hj] = 0

V ec[
k∑

j=1

Ejj(A
−1(Z −Bv)v′)Hj] = 0;

k∑
j=1

EjjA
−1Zv′Hj =

k∑
j=1

EjjA
−1Bvv′Hj

The final expression implies that:

Ell

k∑
j=1

EjjA
−1Zv′Hj = Ell

k∑
j=1

EjjA
−1Bvv′Hj

and there only remains the summand of j=1, from the properties of EllEjj. Thus

EllA
−1Zv′Hl = EllA

−1Bvv′Hl; l = 1; . . . ; k y

Taking into account the relation shown above between B and ∆

B =
k∑

n=1

Enn∆H ′
n

we obtain:

EllA
−1

(
k∑

n=1

Enn

)
Zv′Hl = EllA

−1

(
k∑

n=1

Enn∆H ′
n

)
vv′Hl; l = 1; . . . ; k.
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which implies

k∑
n=1

ulu
′
lA

−1unu′
nZv′Hl =

k∑
n=1

ulu
′
lA

−1unu′
n∆H ′

nvv′Hl; l = 1; . . . ; k.

from which
k∑

n=1

a′
lnElnZv′Hl =

k∑
n=1

a′
lnEln∆H ′

nvv′Hl

that is
a′

llEllZv′Hl = a′
llEll∆H ′

lvv′Hl

where H ′
lvv′Hl is 2× 2 and full range. Therefore we verify:

EllZv′Hl(H
′
lvv′Hl)

−1 = Ell∆; u′
lEllZv′Hl(H

′
lvv′Hl)

−1 = u′
lEll∆

>From which it can be deduced that, considering all the l = 1; . . . ; k

∆̂ =
k∑

l=1

EllZv′Hl(H
′
lvv′Hl)

−1; ∆̂′ =
k∑

l=1

(H ′
lvv′Hl)

−1H ′
lvZ ′E ′

ll

V ec(∆̂′) =
k∑

l=1

[Ell ⊗ (H ′
lvv′Hl)

−1H ′
lv]V ec(Z ′)

Thus, to eliminate the differential, the above-described relation must be fulfilled, this relation
being independent of A (it only depends on Z and v; z depends on the observations and v does
not depend on the random values observed but on exogenous factors). The only random value
is V ec(Z ′). Therefore, this expression enables us to study the distribution of the estimators.
With respect to the first equation, in dV ec(A), we have:

V ec′
[
A−1[(Z −Bv)(Z −Bv)′ − (n− 1)A]A−1

]
dV ec(A) = 0

which implies

Â =
1

n− 1
(Z −Bv)(Z −Bv)′

In conclusion, the maximum likelihood estimators calculated are:

Â =
1

n− 1
(Z −Bv)(Z −Bv)′; V ec(∆̂′) =

k∑
l=1

[Ell ⊗ (H ′
lvv′Hl)

−1H ′
lv]V ec(Z ′)
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