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CENTRAL LIMIT THEOREMS FOR

RECORDS

R. Gouet, F.J. López and G. Sanz

Abstract. Consider a sequence (Xn) of independent and identically distributed random
variables, taking nonnegative integer values and call Xn a record if Xn > max{X1, . . . ,
Xn−1}. In Gouet et al. (2001), a martingale approach combined with asymptotic results
for sums of partial minima was used to derive strong convergence results for the number
of records among the first n observations. Now, in this paper we exploit the connection
between records and martingales to establish a central limit theorem for the number of
records in many discrete distributions, identifying the centering and scaling sequences.
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§1. Introduction

Let (Xn) be a sequence of nonnegative, independent and identically distributed (iid) random
variables (rv’s), with common distribution function F and let Mn = max{X1, . . . Xn}, n ≥ 1
be the sequence of partial maxima; conventionally we write M0 = −1. We say Xn is a (strict,
upper) record if Xn > Mn−1, n ≥ 1. The indicator of a record is denoted by In = 1{Xn>Mn−1}
and the associated counting process by Nn =

∑n
k=1 Ik. General information on the theory of

records can be found in [1]. We are interested here in the asymptotic normality of Nn, suitably
centered and scaled, when the underlying distribution F is concentrated on the nonnegative
integers.

A well known result of A. Renyi [6] states that the indicators In are independent, with
P [In = 1] = 1/n, when F is continuous. Therefore, the central limit theorem (CLT)

Nn − log n√
log n

d−→ N(0, 1),

is readily obtained. When F is discontinuous the indicators In are not independent and their
distributions depend on F . Therefore, this case is somewhat more complicated and results are
rather scarce. W. Vervaat [7] obtains a variety of functional CLT’s for records of nonnegative,
integer valued random variables. In particular, his work contains the asymptotic normality of
Nn for the geometric distribution.

In this paper we establish a central limit theorem for the number of records for a wide range
of discrete distributions, identifying the centering and scaling sequences (Theorem 1 (a)) and
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we give a sketch of the proof. The whole proofs of the results can be checked in Gouet et al.
[5].

We conclude this introduction with additional definitions and notation. Let (Xn) denote a
sequence of iid rv’s such that P [Xn = k] = pk > 0, for k ∈ Z+ = {0, 1, . . .} and n ≥ 1,
with
∑

k≥0 pk = 1. Let F (x) = P [Xn ≤ x] be their common distribution function, F (x−) =

P [Xn < x] the left limit function and F̃ (y) = inf{x | F (x) ≥ y} the (generalized) inverse of
F , x ≥ 0, 0 ≤ y ≤ 1. Clearly ω = F̃ (1) = ∞ and hence, Nn ↗∞ a.s.

For k ∈ Z+, let yk = 1 − F (k) =
∑
i>k

pi be the discrete survival function and define the

discrete failure or hazard rate rk by

rk =
P [X1 = k]

P [X1 ≥ k]
=

pk

yk−1

.

It is easily verified that rk = 1− yk/yk−1 and yk =
k∏

i=0

(1− ri). Let also θ(k) =
∑k

i=0 ri denote

de cumulative hazard function and m(t) = min{j ∈ Z+|yj < 1/t} the quantile function,
k ∈ Z+, t > 0.

Martingales are taken relative to the natural filtration (Fn), with Fn = σ(X1, . . . , Xn), for
n ≥ 1 and F0 = {∅, Ω}. Convergence, almost sure, in probability and weak, will be denoted

respectively by the arrows
a.s.−→,

P−→ and
d−→.

In Section 2 we state the main result (Theorem 1) and show some examples. In Section 3
we give a sketch of the proof of Theorem 1.

§2. Main result and examples

Our main result is the asymptotic normality of the counting process of records Nn suitably
centered and scaled, applicable to a wide spectrum of discrete models. We use a martingale
approach which connects the central limit theorem with convergence results from the theory of
sums of partial minima of iid rv’s, as developed by P. Deheuvels in [3].

Theorem 1. Let zk =
∑

i>k riyi and b2
n =
∑m(n)

k=0 zkrk/yk, for k, n ∈ Z+.
(a) Assume

∑∞
k=0(1− rk) = ∞. If lim sup rk < 1 or lim inf rk > 0, then

Nn − θ(m(n))

bn

d−→ N(0, 1).

(b) If
∑∞

k=0(1 − rk) < ∞, then Nn −m(n) is tight. In particular, there are no sequences
(an), (bn) ↗∞ such that (Nn − an)/bn converges in distribution to a non-degenerate random
variable.

Proof. See [5]

Remark 1. Theorem 1 gives a rather complete picture of the asymptotic normality of the number
of records for discrete distributions. In fact, any sequence (rk), 0 < rk < 1, k ≥ 0 with
∞∑

k=0

rk = ∞ is the failure rate sequence of a distribution on the nonnegative integers. Only

the very special case of distributions whose failure rates (rk) satisfy both lim inf rk = 0 and
lim sup rk = 1 is left out of Theorem 1.
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Example 1. Geometric with parameter p.

(log n)−1/2

(
Nn +

p log n

log(1− p)

)
d−→ N

(
0,− p(1− p)

log(1− p)

)
. (2.1)

Convergence in (2.1) was previously obtained by Vervaat [7] and Bai et al. [2] using com-
pletely different methods. To the best of our knowledge, the cases covered by the next examples
are new.

Example 2. Converging failure rates rk → r, 0 < r < 1, with
∑n

i=1 |ri − r|/√n → 0.

(log n)−1/2

(
Nn +

r log n

log(1− r)

)
d−→ N

(
0,− r(1− r)

log(1− r)

)
. (2.2)

A concrete example of random variable with converging rk’s is the negative binomial, with
pk = (−1)k

(−a
k

)
pa(1− p)k, k ≥ 0, 0 < p < 1, a > 1. In this case, (2.2) holds with r = p.

Example 3. Alternating geometric with parameters p, q. Here, we mean r2k = p and r2k+1 = q,
where 0 < p < q < 1 and k ≥ 0. This random variable can be seen as the number of failures
of alternating coins, with respective success probabilities p and q, until the first head (success)
shows up. In this case,

(log n)−1/2

(
Nn +

(p + q) log n

log(1− p)(1− q)

)
d−→ N

(
0,−p(1− p) + q(1− q)

log(1− p)(1− q)

)
.

Example 4. Converging failure rates rk → 0, with
∑∞

k=1 r2
k < ∞.

(log n)−1/2 (Nn − log n)
d−→ N(0, 1). (2.3)

For a concrete example, consider the rv X with yk = (k + 1)−d, k ≥ 0, d > 0. Then,
rk = d/(k + 1) + O(k−2) and (2.3) applies.

Example 5. Converging failure rates rk → 1 with
∑

(1− rk) = ∞.

If 1− rk = ak−α + δk, k ≥ 1, with a ∈ R+, 0 < α ≤ 1 and
∑ |δk| < ∞, we have

(log m(n))−1/2 (Nn −m(n) + a log m(n))
d−→ N(0, a),

for α = 1, and

(m(n))−
1−α

2

(
Nn −m(n) +

a

1− α
(m(n))1−α

)
d−→ N

(
0,

a

1− α

)
,

for α < 1. Also m(n) ∼ log n
α log log n

.
In the particular case of the Poisson distribution with parameter λ, we get

(log log n)−1/2 (Nn −m(n) + λ log(m(n)))
d−→ N(0, λ),

with m(n) ∼ log n/ log log n.

Remark 2. Notice the differences between continuous and discrete distributions. For contin-
uous distributions, the number of records is always asymptotically normal, with the variance
growing as log n, regardless of the parent distribution F . For discrete distributions, the asymp-
totic normality of the number of records depends on the distribution F via the failure rates (rk):
for distributions with very light tails (those with

∑
(1 − rk) < ∞) the number of records is

not asymptotically normal; moreover, when a CLT holds, the variance grows at a speed which
depends on (rk).
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§3. Sketch of the proof of Theorem 1

The CLT for records of various discrete models is based on a single fundamental martingale,
presented below. The original idea comes from the easily verifiable fact that Nn − pMn is a
martingale, when the underlying rv’s are geometric with parameter p.

Proposition 2. (a) The process

Nn − θ(Mn) = Nn −
Mn∑
k=0

rk, n ≥ 1 (3.1)

is a square integrable martingale.
(b) Let ξk = Ik − [θ(Mk) − θ(Mk−1)], k ≥ 1, then the increments of the processes of

conditional variances in (3.1) are given by

E[ξ2
k|Fk−1] =

∑
i>Mk−1

pi(1− ri) =
∑

i>Mk−1

riyi.

It is important to notice that the process of conditional variances in (3.1) behaves as a sum
of partial minima of iid rv’s. This is so because u(M) =

∑
i>M riyi is a decreasing function of

M and therefore, E[ξ2
k|Fk−1] = u(Mk−1) = min{u(X1), . . . , u(Xk−1)}, k ≥ 2.

>From Proposition 2 above,

n∑
k=2

E[ξ2
k|Fk−1] =

n∑
k=2

min{Z1, . . . , Zk−1} =
n∑

k=2

zMk−1
,

where Zk =
∑

i>Xk
riyi =

∑
i>Xk

pi(1 − ri), k ≥ 1. These random variables are iid, take
values zj =

∑
i>j riyi =

∑
i>j pi(1 − ri) with probability pj and their common distribution

function G is given by

G(z) =
∑
i≥j

pi = yj−1, zj ≤ z < zj−1.

Proposition 3. Let (Zn) be the sequence of iid r.v. defined above and let

b2
n =

m(n)∑
k=0

zkrk

yk

. (3.2)

(a) Assume
∑∞

k=0(1− rk) = ∞. If lim sup rk < 1 or lim inf rk > 0 then

1

b2
n

n∑
k=1

min{Z1, . . . , Zk} P−→ 1.

(b) If
∑∞

k=0(1− rk) < ∞ then

n∑
k=1

min{Z1, . . . , Zk} a.s.−→ Z, (3.3)

where Z is a finite random variable.
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We now get a central limit theorem for the martingale (3.1).

Theorem 4. Assume
∑∞

k=0(1− rk) = ∞. If lim sup rk < 1 or lim inf rk > 0, then

Nn − θ(Mn)

bn

d−→ N(0, 1). (3.4)

where (bn) is defined in (3.2). If
∑∞

k=0(1− rk) < ∞, then Nn− θ(Mn) converge a.s. to a finite
limit.

We consider here the final step towards Theorem 1, namely, the substitution of θ(Mn) by a
deterministic sequence (an) in (3.4). This amounts to showing that

θ(Mn)− an

bn

P−→ 0,

where (bn) is defined in (3.2).

Proposition 5. Assume
∑∞

k=0(1− rk) = ∞. If lim sup rk < 1 or lim inf rk > 0, then

θ(Mn)− θ(m(n))

bn

P−→ 0.

Proof of Theorem 1
Conclusion (a) of Theorem 1 follows immediately from Theorem 4 and Proposition 5. For

(b) note that the tightness of Nn −m(n) is equivalent to

Nn −m(n)

cn

P−→ 0,

for every (cn) ↗ ∞. Write Nn − m(n) = Nn − θ(Mn) + θ(Mn) − Mn + Mn − m(n)
and let (cn) ↗ ∞. The convergence of the series

∑∞
k=0(1 − rk) yields, from Theorem 4,

the convergence of the martingale and consequently, (Nn − θ(Mn))/cn → 0 a.s. Also Mn −
θ(Mn) =

Mn∑
i=0

(1 − ri) converges, so (θ(Mn) − Mn)/cn → 0 a.s. Last, the same proof of

Proposition 3 for the case
∞∑

k=0

(1− rk) = ∞ shows that (Mn −m(n))/cn
P−→ 0.
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