Central Limit Theorems for RECORDS

R. Gouet, F.J. López and G. Sanz

Abstract

Consider a sequence $\left(X_{n}\right)$ of independent and identically distributed random variables, taking nonnegative integer values and call X_{n} a record if $X_{n}>\max \left\{X_{1}, \ldots\right.$, $\left.X_{n-1}\right\}$. In Gouet et al. (2001), a martingale approach combined with asymptotic results for sums of partial minima was used to derive strong convergence results for the number of records among the first n observations. Now, in this paper we exploit the connection between records and martingales to establish a central limit theorem for the number of records in many discrete distributions, identifying the centering and scaling sequences.

Keywords: Extremes, Records, Martingales, Central Limit Theorem
AMS classification: AMS classification 60G70, 60G42

§1. Introduction

Let $\left(X_{n}\right)$ be a sequence of nonnegative, independent and identically distributed (iid) random variables (rv's), with common distribution function F and let $M_{n}=\max \left\{X_{1}, \ldots X_{n}\right\}, n \geq 1$ be the sequence of partial maxima; conventionally we write $M_{0}=-1$. We say X_{n} is a (strict, upper) record if $X_{n}>M_{n-1}, n \geq 1$. The indicator of a record is denoted by $I_{n}=1_{\left\{X_{n}>M_{n-1}\right\}}$ and the associated counting process by $N_{n}=\sum_{k=1}^{n} I_{k}$. General information on the theory of records can be found in [1]. We are interested here in the asymptotic normality of N_{n}, suitably centered and scaled, when the underlying distribution F is concentrated on the nonnegative integers.

A well known result of A. Renyi [6] states that the indicators I_{n} are independent, with $P\left[I_{n}=1\right]=1 / n$, when F is continuous. Therefore, the central limit theorem (CLT)

$$
\frac{N_{n}-\log n}{\sqrt{\log n}} \xrightarrow{d} N(0,1)
$$

is readily obtained. When F is discontinuous the indicators I_{n} are not independent and their distributions depend on F. Therefore, this case is somewhat more complicated and results are rather scarce. W. Vervaat [7] obtains a variety of functional CLT's for records of nonnegative, integer valued random variables. In particular, his work contains the asymptotic normality of N_{n} for the geometric distribution.

In this paper we establish a central limit theorem for the number of records for a wide range of discrete distributions, identifying the centering and scaling sequences (Theorem 1 (a)) and
we give a sketch of the proof. The whole proofs of the results can be checked in Gouet et al. [5].

We conclude this introduction with additional definitions and notation. Let $\left(X_{n}\right)$ denote a sequence of iid rv's such that $P\left[X_{n}=k\right]=p_{k}>0$, for $k \in \mathbb{Z}_{+}=\{0,1, \ldots\}$ and $n \geq 1$, with $\sum_{k \geq 0} p_{k}=1$. Let $F(x)=P\left[X_{n} \leq x\right]$ be their common distribution function, $F\left(x^{-}\right)=$ $P\left[X_{n}<x\right]$ the left limit function and $\tilde{F}(y)=\inf \{x \mid F(x) \geq y\}$ the (generalized) inverse of $F, x \geq 0,0 \leq y \leq 1$. Clearly $\omega=\tilde{F}(1)=\infty$ and hence, $N_{n} \nearrow \infty$ a.s.

For $k \in \mathbb{Z}_{+}$, let $y_{k}=1-F(k)=\sum_{i>k} p_{i}$ be the discrete survival function and define the discrete failure or hazard rate r_{k} by

$$
r_{k}=\frac{P\left[X_{1}=k\right]}{P\left[X_{1} \geq k\right]}=\frac{p_{k}}{y_{k-1}} .
$$

It is easily verified that $r_{k}=1-y_{k} / y_{k-1}$ and $y_{k}=\prod_{i=0}^{k}\left(1-r_{i}\right)$. Let also $\theta(k)=\sum_{i=0}^{k} r_{i}$ denote de cumulative hazard function and $m(t)=\min \left\{j \in \mathbb{Z}_{+} \mid y_{j}<1 / t\right\}$ the quantile function, $k \in \mathbb{Z}_{+}, t>0$.

Martingales are taken relative to the natural filtration $\left(\mathcal{F}_{n}\right)$, with $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$, for $n \geq 1$ and $\mathcal{F}_{0}=\{\emptyset, \Omega\}$. Convergence, almost sure, in probability and weak, will be denoted respectively by the arrows $\xrightarrow{\text { a.s. }}, \xrightarrow{P}$ and \xrightarrow{d}.

In Section 2 we state the main result (Theorem 1) and show some examples. In Section 3 we give a sketch of the proof of Theorem 1 .

§2. Main result and examples

Our main result is the asymptotic normality of the counting process of records N_{n} suitably centered and scaled, applicable to a wide spectrum of discrete models. We use a martingale approach which connects the central limit theorem with convergence results from the theory of sums of partial minima of iid rv's, as developed by P. Deheuvels in [3].
Theorem 1. Let $z_{k}=\sum_{i>k} r_{i} y_{i}$ and $b_{n}^{2}=\sum_{k=0}^{m(n)} z_{k} r_{k} / y_{k}$, for $k, n \in \mathbb{Z}_{+}$.
(a) Assume $\sum_{k=0}^{\infty}\left(1-r_{k}\right)=\infty$. If limsup $r_{k}<1$ or $\lim \inf r_{k}>0$, then

$$
\frac{N_{n}-\theta(m(n))}{b_{n}} \xrightarrow{d} N(0,1) .
$$

(b) If $\sum_{k=0}^{\infty}\left(1-r_{k}\right)<\infty$, then $N_{n}-m(n)$ is tight. In particular, there are no sequences $\left(a_{n}\right),\left(b_{n}\right) \nearrow \infty$ such that $\left(N_{n}-a_{n}\right) / b_{n}$ converges in distribution to a non-degenerate random variable.

Proof. See [5]
Remark 1. Theorem 1 gives a rather complete picture of the asymptotic normality of the number of records for discrete distributions. In fact, any sequence $\left(r_{k}\right), 0<r_{k}<1, k \geq 0$ with $\sum_{k=0}^{\infty} r_{k}=\infty$ is the failure rate sequence of a distribution on the nonnegative integers. Only the very special case of distributions whose failure rates $\left(r_{k}\right)$ satisfy both $\lim \inf r_{k}=0$ and $\limsup r_{k}=1$ is left out of Theorem 1.

Example 1. Geometric with parameter p.

$$
\begin{equation*}
(\log n)^{-1 / 2}\left(N_{n}+\frac{p \log n}{\log (1-p)}\right) \xrightarrow{d} N\left(0,-\frac{p(1-p)}{\log (1-p)}\right) . \tag{2.1}
\end{equation*}
$$

Convergence in (2.1) was previously obtained by Vervaat [7] and Bai et al. [2] using completely different methods. To the best of our knowledge, the cases covered by the next examples are new.
Example 2. Converging failure rates $r_{k} \rightarrow r, 0<r<1$, with $\sum_{i=1}^{n}\left|r_{i}-r\right| / \sqrt{n} \rightarrow 0$.

$$
\begin{equation*}
(\log n)^{-1 / 2}\left(N_{n}+\frac{r \log n}{\log (1-r)}\right) \xrightarrow{d} N\left(0,-\frac{r(1-r)}{\log (1-r)}\right) . \tag{2.2}
\end{equation*}
$$

A concrete example of random variable with converging r_{k} 's is the negative binomial, with $p_{k}=(-1)^{k}\binom{-a}{k} p^{a}(1-p)^{k}, k \geq 0,0<p<1, a>1$. In this case, (2.2) holds with $r=p$.
Example 3. Alternating geometric with parameters p, q. Here, we mean $r_{2 k}=p$ and $r_{2 k+1}=q$, where $0<p<q<1$ and $k \geq 0$. This random variable can be seen as the number of failures of alternating coins, with respective success probabilities p and q, until the first head (success) shows up. In this case,

$$
(\log n)^{-1 / 2}\left(N_{n}+\frac{(p+q) \log n}{\log (1-p)(1-q)}\right) \xrightarrow{d} N\left(0,-\frac{p(1-p)+q(1-q)}{\log (1-p)(1-q)}\right) .
$$

Example 4. Converging failure rates $r_{k} \rightarrow 0$, with $\sum_{k=1}^{\infty} r_{k}^{2}<\infty$.

$$
\begin{equation*}
(\log n)^{-1 / 2}\left(N_{n}-\log n\right) \xrightarrow{d} N(0,1) . \tag{2.3}
\end{equation*}
$$

For a concrete example, consider the rv X with $y_{k}=(k+1)^{-d}, k \geq 0, d>0$. Then, $r_{k}=d /(k+1)+O\left(k^{-2}\right)$ and (2.3) applies.
Example 5. Converging failure rates $r_{k} \rightarrow 1$ with $\sum\left(1-r_{k}\right)=\infty$.
If $1-r_{k}=a k^{-\alpha}+\delta_{k}, k \geq 1$, with $a \in \mathbb{R}_{+}, 0<\alpha \leq 1$ and $\sum\left|\delta_{k}\right|<\infty$, we have

$$
(\log m(n))^{-1 / 2}\left(N_{n}-m(n)+a \log m(n)\right) \xrightarrow{d} N(0, a),
$$

for $\alpha=1$, and

$$
(m(n))^{-\frac{1-\alpha}{2}}\left(N_{n}-m(n)+\frac{a}{1-\alpha}(m(n))^{1-\alpha}\right) \xrightarrow{d} N\left(0, \frac{a}{1-\alpha}\right),
$$

for $\alpha<1$. Also $m(n) \sim \frac{\log n}{\alpha \log \log n}$.
In the particular case of the Poisson distribution with parameter λ, we get

$$
(\log \log n)^{-1 / 2}\left(N_{n}-m(n)+\lambda \log (m(n))\right) \xrightarrow{d} N(0, \lambda),
$$

with $m(n) \sim \log n / \log \log n$.
Remark 2. Notice the differences between continuous and discrete distributions. For continuous distributions, the number of records is always asymptotically normal, with the variance growing as $\log n$, regardless of the parent distribution F. For discrete distributions, the asymptotic normality of the number of records depends on the distribution F via the failure rates $\left(r_{k}\right)$: for distributions with very light tails (those with $\left.\sum\left(1-r_{k}\right)<\infty\right)$ the number of records is not asymptotically normal; moreover, when a CLT holds, the variance grows at a speed which depends on $\left(r_{k}\right)$.

§3. Sketch of the proof of Theorem 1

The CLT for records of various discrete models is based on a single fundamental martingale, presented below. The original idea comes from the easily verifiable fact that $N_{n}-p M_{n}$ is a martingale, when the underlying rv's are geometric with parameter p.

Proposition 2. (a) The process

$$
\begin{equation*}
N_{n}-\theta\left(M_{n}\right)=N_{n}-\sum_{k=0}^{M_{n}} r_{k}, \quad n \geq 1 \tag{3.1}
\end{equation*}
$$

is a square integrable martingale.
(b) Let $\xi_{k}=I_{k}-\left[\theta\left(M_{k}\right)-\theta\left(M_{k-1}\right)\right], k \geq 1$, then the increments of the processes of conditional variances in (3.1) are given by

$$
E\left[\xi_{k}^{2} \mid \mathcal{F}_{k-1}\right]=\sum_{i>M_{k-1}} p_{i}\left(1-r_{i}\right)=\sum_{i>M_{k-1}} r_{i} y_{i} .
$$

It is important to notice that the process of conditional variances in (3.1) behaves as a sum of partial minima of iid rv's. This is so because $u(M)=\sum_{i>M} r_{i} y_{i}$ is a decreasing function of M and therefore, $E\left[\xi_{k}^{2} \mid \mathcal{F}_{k-1}\right]=u\left(M_{k-1}\right)=\min \left\{u\left(X_{1}\right), \ldots, u\left(X_{k-1}\right)\right\}, k \geq 2$.
$>$ From Proposition 2 above,

$$
\sum_{k=2}^{n} E\left[\xi_{k}^{2} \mid \mathcal{F}_{k-1}\right]=\sum_{k=2}^{n} \min \left\{Z_{1}, \ldots, Z_{k-1}\right\}=\sum_{k=2}^{n} z_{M_{k-1}},
$$

where $Z_{k}=\sum_{i>X_{k}} r_{i} y_{i}=\sum_{i>X_{k}} p_{i}\left(1-r_{i}\right), k \geq 1$. These random variables are iid, take values $z_{j}=\sum_{i>j} r_{i} y_{i}=\sum_{i>j} p_{i}\left(1-r_{i}\right)$ with probability p_{j} and their common distribution function G is given by

$$
G(z)=\sum_{i \geq j} p_{i}=y_{j-1}, \quad z_{j} \leq z<z_{j-1} .
$$

Proposition 3. Let $\left(Z_{n}\right)$ be the sequence of iid r.v. defined above and let

$$
\begin{equation*}
b_{n}^{2}=\sum_{k=0}^{m(n)} \frac{z_{k} r_{k}}{y_{k}} . \tag{3.2}
\end{equation*}
$$

(a) Assume $\sum_{k=0}^{\infty}\left(1-r_{k}\right)=\infty$. If $\limsup r_{k}<1$ or $\lim \inf r_{k}>0$ then

$$
\frac{1}{b_{n}^{2}} \sum_{k=1}^{n} \min \left\{Z_{1}, \ldots, Z_{k}\right\} \xrightarrow{P} 1 .
$$

(b) If $\sum_{k=0}^{\infty}\left(1-r_{k}\right)<\infty$ then

$$
\begin{equation*}
\sum_{k=1}^{n} \min \left\{Z_{1}, \ldots, Z_{k}\right\} \xrightarrow{\text { a.s. }} Z, \tag{3.3}
\end{equation*}
$$

where Z is a finite random variable.

We now get a central limit theorem for the martingale (3.1).
Theorem 4. Assume $\sum_{k=0}^{\infty}\left(1-r_{k}\right)=\infty$. If $\limsup r_{k}<1$ or $\liminf r_{k}>0$, then

$$
\begin{equation*}
\frac{N_{n}-\theta\left(M_{n}\right)}{b_{n}} \xrightarrow{d} N(0,1) . \tag{3.4}
\end{equation*}
$$

where $\left(b_{n}\right)$ is defined in (3.2). If $\sum_{k=0}^{\infty}\left(1-r_{k}\right)<\infty$, then $N_{n}-\theta\left(M_{n}\right)$ converge a.s. to a finite limit.

We consider here the final step towards Theorem 1, namely, the substitution of $\theta\left(M_{n}\right)$ by a deterministic sequence $\left(a_{n}\right)$ in (3.4). This amounts to showing that

$$
\frac{\theta\left(M_{n}\right)-a_{n}}{b_{n}} \xrightarrow{P} 0,
$$

where $\left(b_{n}\right)$ is defined in (3.2).
Proposition 5. Assume $\sum_{k=0}^{\infty}\left(1-r_{k}\right)=\infty$. If $\limsup r_{k}<1$ or $\lim \inf r_{k}>0$, then

$$
\frac{\theta\left(M_{n}\right)-\theta(m(n))}{b_{n}} \xrightarrow{P} 0 .
$$

Proof of Theorem 1

Conclusion (a) of Theorem 1 follows immediately from Theorem 4 and Proposition 5. For (b) note that the tightness of $N_{n}-m(n)$ is equivalent to

$$
\frac{N_{n}-m(n)}{c_{n}} \xrightarrow{P} 0,
$$

for every $\left(c_{n}\right) \nearrow \infty$. Write $N_{n}-m(n)=N_{n}-\theta\left(M_{n}\right)+\theta\left(M_{n}\right)-M_{n}+M_{n}-m(n)$ and let $\left(c_{n}\right) \nearrow \infty$. The convergence of the series $\sum_{k=0}^{\infty}\left(1-r_{k}\right)$ yields, from Theorem 4, the convergence of the martingale and consequently, $\left(N_{n}-\theta\left(M_{n}\right)\right) / c_{n} \rightarrow 0$ a.s. Also $M_{n}-$ $\theta\left(M_{n}\right)=\sum_{i=0}^{M_{n}}\left(1-r_{i}\right)$ converges, so $\left(\theta\left(M_{n}\right)-M_{n}\right) / c_{n} \rightarrow 0$ a.s. Last, the same proof of Proposition 3 for the case $\sum_{k=0}^{\infty}\left(1-r_{k}\right)=\infty$ shows that $\left(M_{n}-m(n)\right) / c_{n} \xrightarrow{P} 0$.

Acknowledgements

The authors thank support from the FONDAP Project in Applied Mathematics, FONDECYT grants 1020836, 7020836 and MCYT Procject BFM 2001-2449 and CONSI+D Project 119/2001 and GC of D.G.A.

References

[1] Arnold, B.C., Balakrishnan, N., Nagaraja, H. N. (1998). Records. Wiley, New York.
[2] Bai, Z., Hwang, H. and Liang, W. (1998). Normal approximation of the number of records in geometrically distributed random variables. Random Struct. Alg. 13, 319-334.
[3] Deheuvels, P. (1974). Valeurs extrémales d'échantillons croissants d'une variable aléatoire réelle. Ann. Inst. Henri Poincaré X, 89-114.
[4] Gouet, R., López, F.J. and San Miguel, M. (2001). A martingale approach to strong convergence of the number of records and maxima. Adv. Appl. Prob. 33, 864-873.
[5] Gouet, R., López, F.J. and Sanz, G. (2004). Central limit theorems for the number of records in discrete models. Preprint
[6] Renyi, A. (1962). Théorie des éléments saillants d'une suite d'observations. Ann. Fac. Sci. Univ. Clermont-Ferrand 8, 7-13.
[7] Vervaat, W. (1973). Limit theorems for records from discrete distributions. Stoch. Proc. Appl. 1, 317-334.

Gouet, R.
Dpto. de Ingeniería Matemática
Universidad de Chile y Centro de Modelamiento Matemático UMR 2071 UCHILE-CNRS
Casilla 170-3, Correo 3, Santiago, CHILE.
rgouet@dim.uchile.cl
López, F.J. and Sanz, G.
Dpto. de Métodos Estadísticos. Facultad de Ciencias. Universidad de Zaragoza
C/ Pedro Cerbuna, 12
5009 ZARAGOZA. SPAIN
javier.lopez@unizar.es and gerardo@unizar.es

