
Monografías del Seminario Matemático García de Galdeano 31, 315–330 (2004) 315

SOME CONTRIBUTIONS TO THE THEORY

ON DISCRETE TIME BRANCHING MODELS

M. González, R. Martínez, M. Molina, M. Mota, I. del Puerto,
A. Ramos

Abstract. In this work, a general summary concerning the main contributions achieved
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§1. Introduction

Branching processes theory was initially motivated to explain the extinction phenomenon of
certain family lines belonging to the European aristocracy. Nowadays it provides appropri-
ate mathematical models to describe the probabilistic evolution of systems whose components
(cell, particles, individuals in general) after certain life period reproduce and die. Added to
their theoretical interest, these processes have therefore a major practical dimension because
of potential applications in such diverse fields as biology, demography, ecology, epidemiology,
genetics, medicine and so on. Really, the terminology branching processes was proposed by
A.N. Kolmogorov in 1938 when he was interested about their applications in biology. Classical
books for their study have been provided, among others, by S. Asmussen and H. Hering [2], K.
Athreya and P. Ney [3], P. Guttorp [36], T. Harris [38], P. Jagers [46] or G. Sankaranarayanan
[65].

In this work we state a general summary concerning the main contributions achieved by our
research group to the theory about some discrete time branching models. In section 2 we con-
sider the contributions to certain classical branching models including the Bienaymè-Galton-
Watson process, the Bienaymè-Galton-Watson process with immigration and the controlled
process with both deterministic and random control. A brief presentation on these models
and the topics which have been investigated about them are previously introduced. Section 3
is devoted to stating the contributions achieved in the class of bisexual branching processes.
Particular attention is given to the new bisexual processes introduced and investigated by our
group. Finally, some open research lines for future study are discussed in section 4. For tech-
nical details about the mentioned contributions we refer the reader to the corresponding cited
references.



316 M. González, R. Martínez, M. Molina, M. Mota, I. del Puerto, A. Ramos

§2. Contributions to the theory on some classical branching models

2.1. Bienaymè-Galton-Watson model

Introduced by I.J. Bienaymè in 1845 and later formalized by F. Galton and H. Watson, the
called Bienaymè-Galton-Watson process is a stochastic model defined in the recursive form:

Z0 = N, Zn+1 =
Zn∑
i=1

Xni, n = 0, 1, . . . (1)

where the convention that the empty sum is 0 is adopted, N is a positive integer and Xni, n =
0, 1, . . . ; i = 1, 2, . . . are independent and identically distributed (iid), non-negative and integer-
valued random variables, their common probability law is called the offspring distribution.
Intuitively Xni represents the number of descendants originated by the i-th progenitor in the
generation n, being Zn+1 the population size in the (n + 1)-th generation. It can be easily
verified that {Zn}n≥0 is a homogeneous Markov chain, 0 being an absorbent state and k =
1, 2, . . . transient states. This model has received considerable interest in the literature and
from it, several branching models have been derived. Next we provide some classical results
about it. Let m := E[X01] and σ2 := V ar[X01] < ∞ be the mean and variance of the offspring
distribution respectively.

The called criticality theorem, see K. Athreya and P. Ney [3, pp. 4], asserts that if m ≤ 1
then P (Zn → 0) = 1, and if m > 1 then P (Zn → 0) < 1, being P (Zn → 0) the smallest
root of the equation E[sX01 ] = s in the interval [0, 1]. Moreover, it is verified the duality
extinction-explosion, namely P (Zn → 0) + P (Zn →∞) = 1.

Its limiting evolution depends strongly of m. In fact, for m < 1 (subcritical case) it was
proved in [68] that

lim
n→∞

P (Zn = k | Zn > 0) = bk, k = 1, 2, . . . with
∞∑

k=1

bk = 1

where
∞∑

k=1

kbk < ∞ if and only if
∞∑

k=1

k log(k)P (X01 = k) < ∞. For m = 1 (critical case) it

was determined (see [48] and [68]) that

lim
n→∞

P (n−1Zn ≤ x | Zn > 0) = 1− e−2xσ−2

, x ≥ 0

and for m > 1 (supercritical case) it was established (see [40], [47] or [66]) the existence of
a sequence of positive constants {kn}n≥0 such that {knZn}n≥0 converges almost surely to a
non-negative, finite and non-degenerate random variable.

Results about its accumulated progeny, namely Yn =
n∑

i=0

Zi, n = 0, 1, . . ., were provided in

[37], [42] and [63], and its inferential theory was developed, between others, in [14], [37], [40],
[41] or [60]. In 1922, R. Fisher considered this model under a genetic context and after 1940 its
interest increased due to its several applications in the physical and biological sciences, mainly
to nuclear chain reactions and particles cascades (see [7], [8], [11] or [64]).

Remark 1. We have considered subcritical Bienaymè-Galton-Watson models with some clas-
sical offspring distributions (Poisson, binomial and negative binomial laws) and we have in-
vestigated in [6] the probabilistic evolution of the variables T := min{n > 0 : Zn = 0} and
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YT :=
∑T−1

k=0 Zk, namely the extinction time and the total progeny until the extinction. Through
simulation, a comparative study has been also provided.

2.2. Bienaymè-Galton-Watson model with immigration

Initially studied by C.R. Heathcote [39] and A.G. Pakes [62] as a modification of the standard
model (1), the Bienaymè-Galton-Watson process with immigration is a branching model which
allows the incorporation, in each generation, of individuals from another populations. From the
general setting given in (1) its mathematical formal definition is:

Y0 = N, Yn+1 =
Yn∑
i=1

Xni + In+1, n = 0, 1, . . .

where In+1 represents the number of immigrants in the (n + 1)-th generation, {In}n≥1 being
a sequence of iid non-negative and integer-valued random variables independent of {Xni, n =
0, 1, . . . ; i = 1, 2, . . .}.

Under some conditions it has been established, see G. Sankaranarayanan [65, pp. 195] that
{Yn}n≥0 suitably normalized converges in distribution to certain random variable Y . Supposed
that E[X01] = 1 it was proved, see P. Jagers [46, pp. 56], that Y has a Gamma distribution.
However when E[X01] < 1 or E[X01] > 1 the limiting distribution of Y is not sufficiently
determined.

Remark 2. Our main contribution to the theory on this branching model has been to identify the
Pearson’s distribution type associated to Y by using the first cumulants of both, the offspring
and the immigration laws (see [50]).

2.3. Controlled model with deterministic control function

The controlled branching process with deterministic control function was defined by B.A. Sev-
ast’yanov and A.M. Zubkov [67] in the form:

Z0 = N, Zn+1 =

φ(Zn)∑
i=1

Xni, n = 0, 1, . . .

where the intuitive interpretation of the variables Xni and Zn is the same that in (1) but now,
the novelty is the incorporation of the control function φ whose mission is to determine, in each
generation, the number of progenitors who intervene in the subsequent reproduction process.
Really, for those values of Zn such that φ(Zn) < Zn we have that Zn − φ(Zn) individuals are
removed from the population and therefore they do not participate in the future evolution of
the process. For the values of Zn such that φ(Zn) > Zn a total of φ(Zn)− Zn new individuals
(immigrants) of the same type are added to the population participating in the reproduction
process under the same conditions as the others. Finally, no control is applied on the population
when φ(Zn) = Zn.

With respect to this model, two questions have fundamentally been investigated, the prob-
lem of its possible extinction, i.e. the study of conditions which guarantee that the evolution
of the population finishes from a certain generation (see [67] and [70]) and, supposing that the
extinction has not happened, the problem of investigating its probable future evolution (see [5]
and [70]).
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Remark 3. Our contributions to this class of controlled models have mainly been:

• Assuming a control function φ verifying that φ(x1 + x2) ≥ φ(x1) + φ(x2), x1, x2 ∈ R+

we have studied properties on its stochastic monotony and we have obtained some results
about its extinction probability and limiting behaviour (see [21]).

• We have determined non-parametric estimators for the offspring distribution and its as-
sociated mean and variance. For the proposed estimators, some moments and asymptotic
properties as consistency and limit theorems have been obtained (see [34] and [35]).

2.4. Controlled model with random control function

Consider on the same probability space the independent sets of non-negative integer-valued
random variables {Xni : n = 0, 1, . . . ; i = 1, 2, . . .} and {φn(k) : n, k = 0, 1, . . .}, where Xni

are iid and, for n = 0, 1, . . ., the sequences {φn(k)}k≥0 are independent and with identical one-
dimensional probability distributions. The controlled branching process with random control
function, introduced by N.M. Yanev [69], is defined in the form:

Z0 = N, Zn+1 =

φn(Zn)∑
i=1

Xni, n = 0, 1, . . .

As in (1), Xni represents the number of descendants originated by the i-th individual in the
generation n and Zn+1 is the population size in the (n+1)-th generation. Each individual, inde-
pendently of all others, gives rise to new individuals with the same probability distribution but,
unlike the Bienaymè-Galton-Watson process, the population size in the (n + 1)-th generation
is determined by a random process. Actually, if Zn = k the random variable φn(k) will deter-
mine the number of progenitors in the n-th generation. Thus, it is deduced that this branching
model could describe the probabilistic evolution of populations in which taking into account
some environmental, social or another factors a random mechanism establishes the number of
progenitors who participate in each generation.

Assuming that φn(k) = αnk(1 + o(1)) almost surely, where {αn}n≥0 is a sequence of iid
non-negative random variables, sufficient conditions for the extinction or non-extinction of such
a process were determined in [69]. With similar requirements about the control variables φn(k)
but omitting the assumption of independence in the sequence {αn}n≥0, sufficient conditions for
the extinction were provided in [9] and imposing certain hypotheses on the α-th absolute mo-
ments (1 < α ≤ 2) of the offspring distribution and the control variables, a limiting result was
established in [61]. Finally, using some specific control variables, certain inferential questions
were considered in [15].

Remark 4. Our research group has studied this branching model under a more general context,
assuming asymptotically linear growth of the expectation of the control variables, and we have
investigated its extinction probability and probabilistic evolution. More concretely, our con-
tributions to the theory of this model have been (see [27], [28], [30], [31], [32] and [33]) the
following:

• To study the transition properties between its states.

• To obtain some results about its accumulated progeny.
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• To determine some necessary and sufficient conditions for its almost sure extinction or
its non-extinction with a positive probability.

• To establish, in analogy with the Bienaymè-Galton-Watson process, an appropriate clas-
sification for this process in subcritical, critical and supercritical case.

• To investigate, in accordance with the classification established, its limiting behaviour
suitably normalized.

§3. Contributions to the theory on bisexual branching models

In the Symposium held in 1966 at the Wistar Institute of Anatomy and Biology of Philadelfia,
S.M. Ulam in his presentation title How to formulate mathematically problems of rate of evolu-
tion? pointed out that "There is a very nice and simple mathematical technique for describing
processes starting with a single object, which then duplicates and gives 0, 1, 2 or more descen-
dants. It is called the theory of branching processes. It deals with asexual reproduction and
gives methods to calculate the number of existing particles, of various kinds, in future gener-
ations, and other questions of this sort. I would like to stress that a corresponding theory for
branching with sex, where particles get together, say at random and then produce offspring,
i.e., a combination of a binary process of mating and reproduction, is mathematically much
more difficult and no exact theory exists as yet". Two years later, D.J. Daley [12] introduced
the following two-sex stochastic model:

3.1. Daley bisexual model

Z0 = N, (Fn+1, Mn+1) =
Zn∑
i=1

(fni, mni), Zn+1 = L(Fn+1, Mn+1), n = 0, 1, . . . (2)

where the empty sum is considered to be (0, 0), N is a positive integer, {(fni, mni), n =
0, 1, . . . ; i = 1, 2, . . .} is a sequence of iid non-negative, integer-valued random variables,
their common probability law is called offspring distribution, and the mating function L :
R+ × R+ −→ R+ is assumed to be monotonic non-decreasing in each coordinate, integer-
valued on integer arguments and such that L(x, y) ≤ xy. Intuitively (fni, mni) represents the
number of females and males produced by the i-th mating unit in the n-th generation, hence by
(2), (Fn+1, Mn+1) will be the total number of females and males in the (n + 1)-th generation.
These females and males form Zn+1 = L(Fn+1, Mn+1) couples (mating units), which repro-
duce independently of all other mating units with the same offspring distribution for each gen-
eration. It can be proved that {(Fn, Mn)}n≥1 and {Zn}n≥0 are homogeneous Markov chains.

The Daley’s process is a reasonable model to describe the probabilistic evolution of pop-
ulations with sexual reproduction, it has received some attention in the literature (see [1], [4],
[10], [12], [13], [16], [43], [44] or [64] ) and a survey about it has been recently published by
D. Hull [45]. Next we provide some information on this model.

Definition 1. The Daley’s process is said to be superadditive when its mating function verifies,
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for k = 2, 3, . . ., that

L

(
k∑

i=1

xi,

k∑
i=1

yi

)
≥

k∑
i=1

L(xi, yi), xi, yi ∈ R+, i = 1, . . . , k.

Notice that superadditivity is an intuitive and logic condition. It is not a serious restriction,
most of the mating functions considered are superadditive.

Definition 2. We define the mean growth rates per mating unit as:

rk := k−1E[Zn+1|Zn = k], k = 1, 2, . . .

It is clear that the extinction of this process occurs when for some n it is verified that
Zn = 0. The most important result about its extinction probability was provided in [13] for a
superadditive Daley’s model. In fact, it was proved that P (Zn → 0 | Z0 = k) = 1, k = 1, 2, . . .
if and only if r := limk→∞ rk ≤ 1. This fact motivated its classification in subcritical (r < 1) ,
critical (r = 1) and supercritical (r > 1) case.

Considering the mating function L(x, y) = min{x, y} some results about the limiting be-
haviour of the sequences {r−nFn}n≥1 and {r−nMn}n≥1 were established in [4], and assuming
some additional conditions on the mating function and offspring distribution belonging to the
power series family of distributions, maximum likelihood estimators for the offspring mean
vector and the growth rate r were determined in [16].

Remark 5. Our research group has investigated several questions about this bisexual model and
some contributions to its probabilistic and inferential theory have been provided in [17], [18],
[19], [20], [24], [29] and [52]. To sum up, considering a superadditive Daley’s model we have
obtained:

• Some necessary and sufficient conditions for the almost sure, L1 and L2 convergence of
the sequences {r−nZn}n≥0, {r−nFn}n≥1 and {r−nMn}n≥1 to non-degenerate limits.

• Properties about its stochastic monotony and some results concerning its accumulate
progeny.

• Non-parametric and bayesian estimators for the offspring distribution, the mean vector
and the growth rate.

• Some applications, for example the probabilistic evolution of certain variables in ecolog-
ical problems.

Moreover, in order to describe the probabilistic evolution of more complicated sexual re-
production populations, from the Daley’s model general context, we have introduced and in-
vestigated some new bisexual branching models. Next, we provide the mathematical formal
definition and some information about them:



Some contributions to the theory on discrete time branching models 321

3.2. Bisexual model with immigration of females and males

Introduced in [22], the bisexual process with immigration of females and males is defined in
the form:

Z0 = N, (Fn+1, Mn+1) =
Zn∑
i=1

(fni, mni) + (F I
n+1, M

I
n+1),

Zn+1 = L(Fn+1, Mn+1), n = 0, 1, . . .

where {(F I
n , M I

n)}n≥1 is a sequence of iid non-negative, integer-valued random variables in-
dependent of {(fni, mni), n = 0, 1, . . . ; i = 1, 2, . . .}. Intuitively (F I

n , M I
n) represents the

number of immigrant females and males in the n-th generation.
The classification of its states, relations among its probability generating functions and

some inferential results have been established in [22]. On the other hand, some limiting theo-
rems about it have been obtained in [23] and [26].

3.3. Bisexual model with immigration of mating units

This branching model was also defined in [22] in the following manner:

Z0 = N, (Fn+1, Mn+1) =
Zn∑
i=1

(fni, mni), Zn+1 = L(Fn+1, Mn+1) + In+1 , n = 0, 1, . . .

where {In}n≥1 is a sequence of iid non-negative, integer-valued random variables independent
of the random vectors {(fni, mni), n = 0, 1, . . . ; i = 1, 2, . . .}. The variable In represents the
number of immigrant mating units in the n-th generation.

Results concerning the classification of its states and some relations about its probability
generating functions have been provided in [22] and its limiting behaviour suitably normalized
has been investigated in [25].

3.4. Bisexual model with population-size dependent mating

This branching model has been formally defined in [53] as follows:

Z0 = N, (Fn+1, Mn+1) =
Zn∑
i=1

(fni, mni) , Zn+1 = LZn(Fn+1, Mn+1), n = 0, 1, . . .

where {Lk}k≥0 is a sequence of mating functions. We have extended the classical condition of
superadditivity usually imposed to mating function considering that L∗ : Z+×R+×R+ → R+

defined by L∗(k, x, y) = Lk(x, y) is a superadditive function. Sufficient conditions which
guarantee this requirement have been established in [59] where, under this condition, some
stochastic monotony properties and several results about its accumulated progeny have been
also investigated. On the other hand, results concerning its extinction probability and limiting
behaviour have been derived in [53] and [57].
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3.5. Bisexual model in varying environments

Introduced in [54], this branching process is defined in the form:

Z0 = N, (Fn+1, Mn+1) =
Zn∑
i=1

(fni, mni) , Zn+1 = L(Fn+1, Mn+1) , n = 0, 1, . . .

where, for every n = 0, 1, . . ., {(fni, mni)}i≥1, is a sequence of iid non-negative, integer-valued
random vectors. Consequently, it is deduced that for this process, unlike Daley’s model, the
offspring probability distribution varies from generation to generation and therefore, it is de-
rived that in general {(Fn, Mn)}n≥1 and its associated sequence of mating units {Zn}n≥0 are
non-homogeneous Markov chains. This lack of homogeneity establishes an important differ-
ence with the previous bisexual processes. It can be an interesting model for description of the
probabilistic evolution of sexual reproduction populations in which for some environmental,
social or another reasons, the probability distribution associated to the reproduction changes
in each generation. Relations among its underlying probability generating functions and some
necessary and sufficient conditions for its almost sure extinction have been determined in [54]
and [55]. Results about its limiting behaviour suitably normalized have been obtained in [56]
and [58].

§4. Some open research lines for future study

Nowadays we have open different research lines about branching processes. Next we provide
information about some of them:

4.1. To complete the probabilistic and inferential theory concerning some
classes of branching models previously mentioned

With respect to the class of controlled branching models, some questions for future research
are for example:

(a) To complete the probabilistic theory about the controlled model with random control
function. For instance, two interesting problems are:

(a.1) For k = 1, 2, . . ., let τ(k) := k−1E[X01]E[φ0(k)] which is intuitively interpreted
as the expected growth rate per individual when, in certain generation, there is k
individuals. In order to obtain conditions for the almost sure extinction, in [27]
have been considered different possible behaviours for the sequence {τ(k)}k≥1 with
respect to 1. In particular, the cases lim supk→∞ τ(k) < 1 and lim infk→∞ τ(k) > 1,
called subcritical and supercritical, respectively, have been investigated. An open
question is to consider a controlled process with random control function under the
complementary situation, i.e.

lim inf
k→∞

τ(k) ≤ 1 ≤ lim sup
k→∞

τ(k)

referred as critical case and to investigate its extinction probability and, for some
suitably chosen norming constants, its limiting evolution.
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(a.2) The controlled branching process with random control function defined in (2) can
be generalized by introducing of multi-type random control function in the follow-
ing way:

Z0 = N, Zn+1 =
∑
i∈I

φn,i(Zn)∑
j=1

Xn,i(j), n = 0, 1, . . . (3)

where I is an index set (finite or infinite), for each i ∈ I fixed Xn,i(j) are iid
non-negative and integer-valued random variables, independent of the set of con-
trol variables {φn,i(k), n = 0, 1, . . . ; k = 0, 1, . . . ; i ∈ I}, being {φn,i(k), k =
0, 1, . . . ; i ∈ I}, n = 0, 1, . . . independent random fields with identical one dimen-
sional probability distributions. The particular case of (3) where φn,i(k) ≡ φi(k)
almost surely, φi being a deterministic control function was firstly investigated by
A.M. Zubkov [70]. Our purpose is to investigate the extinction probability and the
limiting behaviour of the general model (3) assuming linear growth of the mathe-
matical expectation corresponding to the multi-type random control variables.

(b) To develop, from a classical and a bayesian point of view, the inferential theory about the
controlled model with random control function.

(c) To develop their potential applications.

Concerning to the class of bisexual branching models some open questions are:

(a) To complete their probabilistic theory. For example, two possibilities are, to study the
Lα-convergence, 1 ≤ α ≤ 2 for the model with population-size dependent mating and,
in order to obtain some new results about the limiting behaviour of the model in varying
environments, to investigate another possible sequences of norming constants.

(b) To develop their inferential theory considering both the classical and the bayesian out-
look.

(c) To develop their potential applications.

4.2. To introduce and investigate new discrete time branching models

In order to describe the probabilistic evolution of more complex populations we are also inter-
ested in to introduce and investigate new branching models. A possibility is for example:

Let {Xn,i(j) : i = 1, . . . , m; n = 0, 1, . . . ; j = 1, 2, . . .} be a sequence of m-dimensional
non-negative, integer-valued and independent random vectors defined on the same probability
space, and such that for each type i ∈ {1, . . . , m} are identically distributed. The basic multi-
type branching model is then introduced as the m-dimensional process {Z(n)}n≥0 defined in
the recursive form:

Z(0) = N, Z(n + 1) =
m∑

i=1

Zi(n)∑
j=1

Xn,i(j), n = 0, 1, . . . (4)
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where N is a m-dimensional vector of non-negative integers, the positive integer m denotes
the number of different types of individuals and the random vector Xn,i(j) informs us about
the number of descendants of each type originated by the j-th progenitor of type i in the n-th
generation. Thus, Z(n) represents the total number of individuals of each type in the generation
n. The process is initiated with the vector of progenitors N . A good exposition about the results
investigated on this multi-type model can be seen in the book by C. Mode [49]. In order to
consider more complicated multi-type situations, our research group is interested in to develop
new multi-type branching models. Taking into account (4), we have introduced the following
model:

For each m-dimensional non-negative and integer-valued vector z let {Yn,i(z) : i = 1, . . . , m;
n = 0, 1, . . .} be a sequence of m-dimensional non-negative and integer-valued random vectors
which are defined on the same probability space where:

(i) If n and ñ are non-negative integers such that n �= ñ, then the m2-dimensional random
vectors (Yn,1(z), . . . , Yn,m(z)) and (Yñ,1(z̃), . . . , Yñ,m(z̃)) are independent for any z and
z̃.

(ii) For every z, the random vectors (Yn,1(z), . . . , Yn,m(z)), n = 0, 1, . . . are iid.

Then, we define the called population-size dependent generalized multi-type process in the
form:

Z(0) = N Z(n + 1) =
m∑

i=1

Yn,i(Z(n)), n = 0, 1, . . .

It is easy to verify that (4) is a particular case of this model. Our interest will be focused in the
study of its probabilistical and inferential theory.

4.3. To develop the theory about continuous time bisexual branching mod-
els

Note that the previous branching models considered are discrete time processes. We have also
initiated a new research line on continuous time bisexual models. In fact, we have formulated
the following general continuous time bisexual process (see [48]):

Let us consider the sets of random variables on a common probability space:

(i) {(ηnk; fnk, mnk), k = 1, 2, . . .}, n = 0, 1, . . ., are iid vectors, where {ηnk}k≥0 are iid
non-negative random variables and {(fnk, mnk)}k≥0 are iid non-negative integer-valued
random vectors.

(ii) {τf (n, k; i)} and {τm(n, k; i)}, n = 0, 1, 2, ...; k = 1, 2, ...; i = 1, 2, ..., are independent
sets of non-negative iid random variables.

(iii) The random point process {Sn}n≥0, with S0 = 0 < S1 < S2 < ... < Sn < ...

Intuitively, one can interpreted Sn as a moment of a mating of the n-th generation of the
mating units. Hence, for k = 1, 2, . . ., Tk = Sk−Sk−1 will represent the k-th period of forming
of the k-th generation of the mating units.
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Then (ηnk; fnk, mnk) can be interpreted as the evolution of the k-th mating unit which is
formed in the n-th generation, where ηnk is the life-period of the unit and (fnk, mnk) is the
offspring of fnk female and mnk male individuals born at zero-age in the end of the life-period.

The evolutions of the individuals are assumed independent. The variable τf (n, k; i) (or
τm(n, k; i)) can be interpreted as a life-period of the i-th female (or male) born by the k-th unit
of the n-th generation.

It is proposed that the process starts by N ≥ 1 mating units at zero-age, i.e. Z(0) = Z0 = N
is the 0-generation.

Then each mating unit evolves according to (η0k; f0k, m0k), k = 1, 2, ..., N and it is not
difficult to see that the number of the females and males at the moment S1 can be presented as
follows:

F1 = F (S1) =

Z0∑
k=1

1{S0<η0k≤S1}

f0k∑
i=1

1{τf (0,k;i)≥S1−η0k},

M1 = M(S1) =

Z0∑
k=1

1{S0<η0k≤S1}

m0k∑
i=1

1{τm(0,k;i)≥S1−η0k}

Hence the first generation of the units can be determined by the condition Z1 = L(F1, M1),
where L(x, y) is a mating function. The new mating units have a zero-age and evolve inde-
pendently of each -other according to (η1k; f1k, m1k), k = 1, 2, ..., Z1. The new born females
have a zero-age and a life-period τf (1, k; i), i = 1, 2, ..., f1k. Similarly for the males with a
life-period τm(1, k; i), i = 1, 2, ...,m1k. Then the numbers of the females and males which
exist at the moment S2 can be calculated as follows:

F2 = F (S2) =

Z0∑
k=1

1{S1<S0+η0k≤S2}

f0k∑
i=1

1{τf (0,k;i)≥S2−(η0k+S0)}

+

Z1∑
k=1

1{S1<S1+η1k≤S2}

f1k∑
i=1

1{τf (1,k;i)≥S2−(η1k+S1)},

M2 = M(S2) =

Z0∑
k=1

1{S1<S0+η0k≤S2}

m0k∑
i=1

1{τm(0,k;i)≥S2−(η0k+S0}

+

Z1∑
k=1

1{S1<S1+η1k≤S2}

m1k∑
i=1

1{τm(1,k;i)≥S2−(η1k+S1)}

Hence the second generation of the units is Z2 = L(F2, M2) and so on.
Similarly, if the first n generations (Fk,Mk; Zk), k = 1, 2, ..., n are determined, then it is

not difficult to obtain the next generation

Fn+1 = F (Sn+1) =
n∑

j=0

Zj∑
k=1

1{Sn<Sj+ηjk≤Sn+1}

fjk∑
i=1

1{τf (j,k;i)≥Sn+1−(ηjk+Sj)},
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Mn+1 = M(Sn+1) =
n∑

j=0

Zj∑
k=1

1{Sn<Sj+ηjk≤Sn+1}

mjk∑
i=1

1{τm(j,k;i)≥Sn+1−(ηjk+Sj)} (5)

where Z0 = N, and Zn+1 = L(Fn+1, Mn+1), n = 0, 1, 2, ...
It is not difficult to realize that the continuous time bisexual branching process, namely

{B(t)}t≥0, where B(t) = (F (t), M(t); Z(t)), can be determined by the process {Bn}n≥0,
where Bn = (Fn, Mn; Zn), defined by (5) with B0 = (0, 0; N),.

Indeed, let {ν(t)}t≥0, where ν(t) = max{n : Sn ≤ t}, be the corresponding renewal
process. Then taking into account (i)− (iii) and (5) it follows that for t ≥ 0 :

Z(t) =

ν(t)∑
j=0

Zj∑
k=0

1{ηjk≥t−Sj},

F (t) =

ν(t)∑
j=0

Zj∑
k=1

1{Sν(t)<Sj+ηjk≤t}

fjk∑
i=1

1{τf (j,k;i)≥t−ηjk−Sj)},

M(t) =

ν(t)∑
j=0

Zj∑
k=1

1{Sν(t)<Sj+ηjk≤t}

mjk∑
i=1

1{τm(j,k;i)≥t−ηjk−Sj)}

(6)

From (5) and (6) it follows that, in general, the processes {Bn}n≥0 and {B(t)}t≥0 are non-
markovian and also non-homogeneous in time. A questions for a future research is to develop
its probabilistic and inferential theory.
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