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COMBINED MIXED FINITE ELEMENT AND

FINITE VOLUME FOR FLOW AND

TRANSPORT IN POROUS MEDIA

B. Amaziane and M. El Ossmani

Abstract. This paper is concerned with numerical methods for the modeling of flow and
transport of contaminant in porous media. The numerical methods feature the mixed finite
element method over triangles as a solver to the Darcy flow equation, and a conserva-
tive finite volume scheme for the concentration equation. A series of numerical examples
demonstrates the effectiveness of the methodology for a coupled system which includes
an elliptic equation and a diffusion-convection equation arising in modeling of flow and
transport in heterogeneous porous media.
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§1. Introduction

In this paper, we focus our attention on the study and prediction of single phase flow of an in-
compressible fluid with a dissolved solute with an eye toward nuclear waste repository studies.
The understanding and prediction of fluid flow through porous media is of great importance
in various areas of research and industry. Petroleum engineers need to model multiphase and
multicomponent flow for production of hydrocarbons from petroleum reservoirs. Hydrologists
and soil scientists are concerned with underground water flow in connection with applications
to civil and agricultural engineering, and, of course, the design and evaluation of remediation
technologies in water quality control rely on the properties of underground fluid flow. More
recently, modeling flow and transport of contaminant received an increasing attention in con-
nection with the behavior of geological isolation of radioactive waste after the drilling of the
wells of shafts.

The governing equations arise from the laws of conservation of mass of the fluid, along
with a constitutive relation relating the fluid velocity which appear in the conservative law
to the pressure gradient and gravitational effects. Traditionally, the standard Darcy equation
provides this relation.

The mathematical nature of the flow and mass balance equations is different and specific
methods for their approximations should be considered in numerical simulation. The method
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that one chooses to numerically solve the balance equation should mimic the essence of the
physics by preserving the corresponding conservation laws. Yet, discontinuity which presents
should move at the correct speeds and should be well resolved by the numerics. One must also
have accurate calculations of the velocity, even for highly heterogeneous media where there are
large jumps in the flow capabilities and other physical properties.

Flow simulation in petroleum and environmental applications has been extensively studied
using finite element methods in the last two decades (see, e.g., [15], [9] and the bibliogra-
phies therein). Also, discretizations using both finite element and finite volume methods are
presented in [10]. More recently, finite volume methods were developed and analyzed for im-
miscible two-phase flow in porous media in the case where the diffusion term is neglected,
(see [12] and the references therein). This approach leads to robust schemes applicable for
unstructured grids and the approximate solution has various interesting properties which corre-
spond to the properties of the physical solution. These methods have been useful for advective
flow problems because they combine element by element conservation of mass with numerical
stability and minimal numerical diffusion, (see [1], [2], [4], [8], [13], [17] and the references
therein).

The purpose of this paper is to discuss the applicability of the mixed finite element methods
and finite volume methods to flow and transport in porous media. We focus on miscible flow
in heterogeneous porous media. The mathematical formulation of these types of flow leads to
a coupled system of partial differential equations which includes an elliptic pressure-velocity
equation and a diffusion-convection concentration equation. The concentration equation is
convection dominated and thus special care should be taken in discretization. The diffusion-
dispersion term is important in several cases and cannot be neglected.

The mixed finite element method is employed to discretize the Darcy flow equation. Not
only do mixed methods provide a very accurate determination of the velocity field, but they also
allow for a natural treatment of practical well conditions. A conservative finite volume method
is then used for the mass balance law, i.e. the concentration equation. A Godunov-type method
is used to treat the convective term and a P1-finite element scheme is used for the discretization
of the diffusion term.

The paper will be organized as follows. In the next section, we give a short description of
the mathematical and physical model used in this study. In section 3, the numerical scheme
for the flow equation is presented with emphasis on the mixed finite element method employed
for the solution of the pressure-velocity equation. Section 4 contains the finite volume scheme
developed for the transport equation. A vertex-centered finite volume method is used for the
solution of the concentration equation. Section 5 is devoted to the presentation of the results of
the COUPLEX1 Test case [6]. Additional conclusions are drawn in section 6.

§2. Governing Equations

We consider for simplicity a two-dimensional horizontal reservoir where the gravity effects
are negligible. The single-phase flow of an incompressible fluid with a dissolved solute in a
horizontal porous reservoir Ω ⊂ IR2 over a time period ]0, T [, is given by [14]:
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Pressure equation:⎧⎨⎩ �q = −K(x)
µ
∇p in Ω

div �q = 0 in Ω
�q.�n|ΓN1 = −q0 ; �q.�n|ΓN2 = 0 ; p|ΓD = p0

(1)

where the boundary Γ splits up into three parts such that Γ = ΓN1 ∪ ΓN2 ∪ ΓD.
Concentration equation:⎧⎨⎩ Φ(x)∂C

∂t
− div(D(x, �q)∇C − C�q) + λ(x)C = f(x, t) in Ω×]0, T [

C|Γ1 = c1; D∇C.�n|Γ2 = 0; (D∇C − C�q).�n|Γ3 = d3 in ]0, T [
C(x, 0) = C0(x) in Ω

(2)

where the boundary Γ splits up into three parts such that Γ = Γ1 ∪ Γ2 ∪ Γ3, p and �q are the
pressure and Darcy velocity of the fluid mixture, Φ and K are the porosity and the permeability
of the medium, µ is the viscosity of the mixture, C is the concentration of the contaminant
solute, and f is the external rate of flow. λ is the latency retardation factor. q0 is a flow rate
specified at ΓN1 and p0 is a given pressure at ΓD. c1 is a given concentration at Γ1, d3 is the
total flux specified at Γ3. In addition, an initial condition C0 is specified. For more details on
the assumptions on the data see [3].

The form of the diffusion-dispersion tensor D that we use in our simulator is given by:

D(x, �q) = dmI + |�q|[αlE(�q) + αt(I − E(�q))]

with Eij(�q) =
qiqj

|�q|2 , dm is the molecular diffusion coefficient, and αl and αt are the magnitudes
of longitudinal and transverse dispersion respectively.

Before describing the numerical discretization of the coupled problem (1) − (2), we give
some notations. Let τ={t0, ..., tN} be a partition of [0, T ] and ∆tn = tn+1 − tn the time step
size of τ . Furthermore, let (Th)h>0 be an admissible triangulation of Ω, such that Ω̄ = ∪T∈Th

T̄
and I denotes the set of vertex indices of the triangulation. Let us note by Eh the set of the
edges of the triangulation. We define for each vertex xj , j ∈ I of the triangulation (Th)h>0

the corresponding dual cell Mj by connecting the barycenter with the medium of the edge (see
Figure 1). The dual mesh Σh = {Mj, j ∈ I} is a partition of our domain Ω.

Let us state the following notations and assumptions:
• Ω is a bounded open polygonal subset of IR2. Q = Ω×]0, T [.
• Φ ∈ L∞(Ω), 0 < Φ− ≤ Φ(x) ≤ Φ+ ≤ 1 a.e. in Ω.
• C0 ∈ L∞(Ω), 0 ≤ C0(x) ≤ 1 a.e. in Ω, λ ∈ L∞(Ω), λ(x) ≥ 0 a.e. in Ω.
• D and K are bounded, uniformly positive definite symmetric tensors.
• �q ∈ H(div, Ω), �q ∈ (L∞(Ω))2 a.e. in ]0, T [.
• f ∈ L2(Q), f(x, t) ≥ 0 a.e. in Q.
• (Th)h>0 is a regular triangulation of Ω.
• δjl = δ(xj, xl) is the Euclidian distance between xj and xl.
• N0

j = card {l ∈ ∂Mj}.
• M0 = card {Mj ∈ Σh}.
• h = min {|l|, l ∈ ∂Mj, Mj ∈ Σh}.
• H = max {|L|, L ∈ ∂T, T ∈ Th}.
• Φj = 1

|Mj |
∫

Mj
Φ(x)dx and λj = 1

|Mj |
∫

Mj
λ(x)dx.
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Figure 1: Vertex-centered mesh.

• fn
j = 1

∆tn|Mj |
∫ tn+1

tn

∫
Mj

f(x, t)dxdt and C0
j = 1

|Mj |
∫

Mj
C0(x)dx.

• γH2 ≤ |Mj| ≤ βh2, ∀j ∈ I , where β ≥ γ > 0 are constants independent of h.
• h2 ≤ |T | ≤ H2, ∀T ∈ Th.

§3. Numerical Method for the Flow Equation

In this section, we describe a mixed finite element method for the accurate approximation
of the pressure-velocity equation (see, e.g., [7]). This method conserves mass cell by cell
and produces a direct approximation of the two variables pressure and velocity. Since the
transport term in (2) is governed by the fluid velocity, accurate simulation requires an accurate
approximation of the velocity �q. Because the lithology in the reservoir can change abruptly,
causing rapid changes in the flow capabilities of the rock, the coefficient K in (1) can be
discontinuous.

We introduce the following finite element spaces (see, e.g., [7], [18]): T ∈ Th: triangle,
T ′ ⊂ T edge of T .

RT0(T ) =
{
�α + βx, with �α ∈ R2 and β ∈ R

}
RT0 is the lowest Raviart-Thomas space.

Xh
0,N =
{
�qh ∈ L2(Ω), �qh.�n = 0 on ΓN1 , qh|T ∈ RT0(T ) ; ∀T ∈ Th

}
P h

0 =
{
vh ∈ L2(Ω), vh|T = Cte ; ∀T ∈ Th

}
Lp0

h =
{

λh ∈ L2(Eh) ; λh|T
′
= Cte ;∀T ′ ∈ Eh, λh|ΓD = p0

}
.

A Lagrangian multiplier λ is introduced in order to get the continuity of the normal component
of the velocity across the inter-element boundaries (see [7]).
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The mixed hybrid finite element approximation (�qh, ph, λh) ∈ Xh
0,N ×P h

0 ×Lp0

h of (�q, p, λ)
is the solution of the following problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
T

µK−1�qh · �s dT −
∫

T
phdiv�s dT +

∑
T ′∈T

∫
T ′ λh�s · �n dT ′ = 0 ∀�s ∈ RT0∫

T
wdiv�qh dT = 0 ∀w ∈ P h

0∑
T∈Th

∑
T ′∈T

∫
T ′ µ�qh · �n dT ′ =

∑
T

′∈ΓN1

∫
T ′ q0 µ dT

′ ∀µ ∈ L0
h

(3)

Once the approximate formulation has been written, the resulting system of equations is very
large and the next step is to choose the most efficient way to implement it. It is possible (see,
e.g., [7], [5]) to reduce the solution of the system (3) to the solution of a linear system involving
only the Lagrangian multipliers vector λh, with a symmetric positive definite and sparse matrix.
Once this system is solved, �qh and ph are obtained through a simple post-process at the element
level.

§4. Approximation Method for the Transport Equation

In this section, we describe the finite volume method used for the approximation of the concen-
tration equation. A Godunov scheme is used for the convection term and a P1-finite element
scheme is used for the discretization of the diffusion-dispersion term. We will define a semi-
implicit finite volume scheme: explicit approximation of the convection term and implicit ap-
proximation of the diffusion-dispersion term. Only a short description of the method employed
in this work will be given. The interested reader is reffered to [1], [2] and [3] for more details.

Integrating the equation (2) in Mj × [tn, tn+1], we obtain the following scheme:

Cn+1
j − ∆tn

|Mj |Φj

∑
l∈∂Mj\Γ(Cn+1

l − Cn+1
j )

Dn
jl

δjl
|l|+ ∆tn

Φj
λjC

n+1
j

= Cn
j + ∆tn

|Mj |Φj

∑
l∈∂Mj

(Cn
l − Cn

j )(−�qn
l .�njl)

+|l|+ ∆tn

Φj
fn

j

(4)

where

Dn
jl = −|T ||l| δjl∇χMl,T

DT (�q).∇χMj,T
(5)

with

DT (�q) =
1

|T |∆tn

∫ tn+1

tn

∫
T

D(x, �q)dxdt (6)

χMj,T
is the standard P1-finite element basis associated to the triangle T .

In [3] we proved that this scheme satisfies a discrete maximum principle under appropriate
CFL condition, L∞ stability and BV estimates and some convergence results are derived.

§5. Numerical Experiments

In this section, we present some numerical results in 2D based on the schemes presented in
this paper. We present the results obtained for the simulation of the COUPLEX1 Test case
[6]. It is a benchmark of numerical techniques designed for the simulation of the transport
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of contaminants by the water flowing through a porous medium. The goal is to compute a
simplified far field model used in nuclear waste management simulation. The repository lies at
a depth of 450m(meters) inside a clay layer which has above it a layer of limestone and a layer
of marl and below it is a layer of dogger limestone. Water flows slowly through these porous
media and convects the radioactive elements leak from containers. The computational domain
is in a rectangle [0, 25000]× [0, 695] in meters. The layers of dogger, clay, limestone, and marl
are located as in Figure 2, for this domain the computation should be carried for t ∈ [0, T ] with
T = 107 years. The permeability tensor K, assumed constant in each layer is given in Table 1.

Marle Limestone Clay Dogger
K(m/year) 3.1536e− 5 6.3072 3.1536e− 6 25.2288

Table 1: Permeability in the four rock layers.

The boundary conditions are:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

H = 289 on {25000} × {0, 200}
H = 310 on {25000} × {350, 595}
H = 180 + 160x/25000 on {0, 25000} × {695}
H = 200 on {0} × {295, 595}
H = 286 on {0} × {0, 200}
∂H
∂n

= 0 elsewhere on the boundary.

(7)

where H is the hydraulic head such as H = p/ρg + z, g is Newton’s constant, ρ is the density
and z is the depth.

Table 2 contains the data corresponding to the convection-diffusion-reaction equation for
the Iodine 129.

dm(m2/year) αl αt Φ λ
Dogger 5.0e− 4 50 1 0.1 Log(2)/1.57e− 7
Clay 9.48e− 7 0 0 0.001 Log(2)/1.57e− 7
Limestone 5.0e− 4 50 1 0.1 Log(2)/1.57e− 7
Marl 5.0e− 4 0 0 0.1 Log(2)/1.57e− 7

Table 2: Diffusion/dispersion parameters in the four layers.

The values of the source term in the repository are given in tabulated form in separately
provided data files [6]. It is assumed that there is no source outside the repository. The initial
values of the concentration C are zero at time zero.

Boundary conditions for the transport are:⎧⎪⎪⎨⎪⎪⎩
∂C
∂n

= 0 on {0} × (0, 200)
∂C
∂n

= 0 on {0} × (350, 595)
(D∇C − C�q) .�n = 0 on (0, 25000)× {0}
C = 0 elsewhere on the boundary.

(8)
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Figure 2: Permeability distribution.
Figure 3: Velocity field.

Several authors tested COUPLEX1 by using various numerical schemes [6], (see, e.g., [11],
[16], [19]). We present hereafter the main results concerning the hydraulic head field and the
Iodine transport. Figure 3 shows the fluid flux. The hydraulic head contours are presented in
Figure 4. In Figures 5, 6 and 7, we show the concentration contours at three times step. The
significant result that one can retains is that the Iodine concentration reaches the left boundary
of the domain. This is mainly due to the fact that the concentration equation is convection
dominated what makes the dispersion of the Iodine follows the mouvement of the flow. One
can also say that the transfer time of the radionucleides is very important around the geologic
formation. After 107 years, a great quantity of the Iodine still remains in the repository.

The obtained results are very close to those obtained by [11], [19]. As can be seen, the
method has captured the flow of the system very accurately. This demonstrates the excellent
schock-capturing properties of the finite volume scheme for the solution of the concentration
equation.

Figure 4: Hydraulic head profile. Figure 5: Concentration contours at T=50110.
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Figure 6: Concentration contours at T=501100. Figure 7: Concentration contours at T=1e+07.

§6. Conclusion

A mixed finite element method was used to obtain an accurate approximation of the flow equa-
tion and a vertex-centered finite volume method for the concentration equation. Numerical
simulations from 2D tests show that this approach leads to a set of robust schemes. In the
future, we will consider the extension of the approach described in this paper to 3D problems.
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