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FACTORIAL EXPERIMENTAL DESIGNS AND

GENERALIZED LINEAR MODEL

S. Dossou-Gbété and W. Tinsson

Abstract. This communication deals with the analysis of experimental designs using a
generalized linear model. We prove that factorial designs provide a very simple estimation
of polynomial model parameters for the Fisher scoring algorithm if we use a particular
link function (called natural function). These results allow us to consider non-gaussian
responses.
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§1. Introduction

Experimental designs are usually used in a linear context, i.e. assuming that the mean response
can be correctly fitted by a linear model (polynomial of degree one or two in most cases). This
assumption is often associated to the normality of the observed responses (in order to obtain
an analysis of variance, a test of hypothesis, etc...). Then some classical configurations allow
us to make the experiments at best (see the books of Box and Draper [1] or Khuri and Cor-
nell [8]). However, it is clear that these linear assumptions are inadequate for some practical
applications.

Then relaxing from linear model and gaussian model framework is needed. Many books
and papers deal with this question (see, for example, the chapter 10 of the book of Khuri and
Cornell [8] for a synthesis). But there are two main difficulties with this approach. First, the
choice of a good nonlinear model is not always easy. In an other hand (assuming the nonlinear
model is given) using a classical design (factorial, central composite, etc...) is not in general
the best choice. This fact can be problematic when industrial results are first obtained with a
classical design. If, at last, a linear model is inappropriate it is then impossible in general to
make new experiments because they are too much expensive.

Our goal is to propose another class of solutions. These solutions have to be on one hand
more general than the linear case and the gaussian framework and, on the other hand, easier
to improve than nonlinear modeling. This intermediate solution consists of the choice of a
generalized linear model (see, for example, the book of Grenn and Silverman [7]). In other
words, we assume that the image of the mean response by a given "link function" can be
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modelled via a linear relationship. Such an assumption allows us to consider any responses with
a distribution in the exponential family (Bernoulli distribution, binomial distribution, Poisson
distribution, Gamma distribution, etc...) and then we have not the restrictions of the classical
linear case. These models have been studied in order to construct in general D-optimal designs
(see the book of Pukelsheim [10] for the general problem of optimality). The main problem
of this approach is due to the information matrix which depends on the unknown parameters
of the model. Some authors have then develop Bayesian methods (see Chaloner and Larntz
[4]) or constructions of robust designs (see Chipman and Welch [5] or Sebastiani and Settimi
[11]) sometimes available only for a logistic regression. Our goal in this paper is to propose a
general method of analysis with a simple information matrix, independent of the parameters of
the model. We prove in the following that if we choose appropriate link functions then classical
factorial designs can be advantageously used.

§2. The generalized linear model

2.1. Definitions

We consider in the following a generalized linear model as it was introduced by Nelder and
Wedderburn [9]. Suppose that we have n observed responses yi (i = 1...n) associated to the
independent random variables Yi with the same distribution, element of an exponential family.
Denoting mi = E (Yi) , we have then a generalized linear model if and only if:

∀ i = 1...n , g (mi) = xt
iβ

where xi ∈ Rp is the vector of predictors, β ∈ Rp is the vector of unknown parameters of
the model and g is the link function (assumed to be bijective and differentiable). Because
Yi (i = 1...n) is an element of an exponential family we have then one of the two following
likelihood:

f (yi, θi, φ) = h (yi, φ) exp

(
yiθi − v (θi)

φ

)
with φ known or unknown,

or f (yi, θi, φi) = h (yi, φi) exp

(
yiθi − v (θi)

φi

)
with all φi known.

(1)

Now we consider the first case with only one parameter φ but all the following results are still
true with parameters φi instead of φ. We say that θi is the canonical parameter of the distribution
(associated to Yi) and that φ is a dispersion parameter. It is usual to use the canonical link
function which means that:

∀ i = 1...n , g (mi) = θi.

Recall that for every element of an exponential family we have the following relations:

E (Yi) = mi = v′ (θi) and Var Yi = φv′′ (θi) . (2)

So we put Var Yi = V (mi) with V (mi) = φm′
i (θi) .
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2.2. Estimation of the parameters

For a given generalized linear model, our problem is then to estimate the unknown parameters
for the specifications of the mean. In a classic way, we can use the maximum likelihood method.
Our goal is then to maximize the likelihood of the sample or (equivalently) its logarithm, that
is:

L (y, θ, φ) =
1

φ

n∑
i=1

(yiθi − v (θi)) +
n∑

i=1

ln (h (yi, φ)) . (3)

The likelihood maximization involves nonlinear equation for which the solution is not in closed
form. Nelder and Wedderburn [9] have proposed to use the Fisher scoring algorithm in order
to find a numerical approximation of the maximum likelihood estimator β̂. Fisher’s method of
scoring is the best known quasi-Newton method to solve the likelihood maximization problem
(see Smyth [12]). It appear to be a special case of the Newton Raphson method when the link
function is the canonical link. For the implementation of this algorithm we have to choose an
initial value β(0) for the parameters of the model and then to apply iteratively the relation:

∀ k ∈ N∗ , β(k+1) = β(k) +
(
X tW (k)X

)−1
q(k) (4)

where β(k) ∈ Rp is an approximation of the solution at the iteration k, X is the model matrix
(with n rows and p columns), W (k) = W

(
β(k)
)

and q(k) = q
(
β(k)
)

are such that W (β) =
diag(ωi , i = 1...n) and q (β) ∈ Rp satisfy:

ωi =
1

Var Yi

(
∂mi

∂ηi

)2

with ηi = g (mi) and q (β) =

(
∂L (y, θ, φ)

∂βj

)
j=1...p

.

Note that the matrix W has to be computed at every iteration (matrix W (k)) because it depends
on mi and mi = g−1(xt

iβ) depends on the value of the approximation of the solution at the
iteration k (vector β(k)).

Remark. It is also possible to find a vector z(k) such that relation (4) becomes:

β(k+1) =
(
X tW (k)X

)−1
X tW (k)z(k).

In other words, the Fisher scoring algorithm is also an iteratively reweighted least squares
(IRWLS) method.

2.3. Modified Fisher’s method of scoring

Our goal is now to simplify the algorithm of Fisher scoring by dropping out he diagonal weight-
ing matrix W . This can be done by a judicious choice of the link function. In fact our objective
is :

W = Id ⇔ ∀ i = 1...n ,
1

Var Yi

(
∂mi

∂ηi

)2

= 1. (5)

But we know, from relation (2), that Var Yi = V (mi) . Then mi = g−1 (ηi) implies that:

(5) ⇔ ∂mi

∂ηi

=
√

V (mi) ⇐⇒
1

g′ (mi)
=
√

V (mi).
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Our proposal relies on the following lemma:

Lemma 1. The matrix W is the identity matrix if and only if the link function g satisfies:

∀ i = 1...n , g′ (mi) = V −1/2 (mi) .

Such a function is then called natural

Distribution of Yi Function V Natural link fct. Canonical link fct.

Bernoulli (p) t (1− t)
√

n arcsin (2t− 1) ln

(
t

1− t

)
Binomial B (n, p) t

(
1− t

n

) √
n arcsin

(
2t

n
− 1

)
ln

(
t

n− t

)

Neg. Bin. (n, p) t

(
t

n
+ 1

) √
n arg cosh

(
2t

n
+ 1

)
ln

(
t

n + t

)
Poisson P (λ) t 2

√
t ln t

Gamma G (a, p)
t2

p

√
p ln t

p

t

Table 1: Natural link function for different distributions.

Table 1 gives, for some exponential families of distributions, the natural link functions (depend-
ing on t) verifying the differential equations of lemma 1 (with the additive constant chosen to
be zero). We also recall in this table the classical canonical link function.

Remark. We have seen in subsection 2.2 that the Fisher scoring algorithm is in fact an iteratively
reweighted least squares method. Then, the use of the natural link function allows us to have
simply an iteratively ordinary least squares method.

The algorithm of Fisher scoring needs also the use of a vector q such that
q (β) = (∂L (y, θ, φ) /∂βj) for j = 1...p (see subsection 2.2). In a classical way, we have the
following relation (from the chain rule):

∂L

∂βj

=
∂L

∂θi

∂θi

∂mi

∂mi

∂ηi

∂ηi

∂βj

.

Then we obtain immediately for the likelihood of every sample of the exponential family (see
formula (3)):

∀ j = 1...p ,
∂L

∂βj

=
n∑

i=1

(yi −mi)

Var Yi

∂mi

∂ηi

[X]ij

where [X]ij is the element of row i and column j of the matrix model X. This general relation
can be simplified in our case because we have:

ηi = g (mi) with g′ (mi) = V −1/2 (mi) so
∂mi

∂ηi

=
√

V (mi).
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Thus, we can state the following lemma:

Lemma 2. If the link function is the natural link function the vector q is then defined by:

∀ j = 1...p ,
∂L

∂βj

=
n∑

i=1

[X]ij y∗
i with y∗

i =
yi −mi√
V (mi)

.

We see from lemma 2 that the vector q has then a very simple expression when the natural link
function is used. It needs only the observations y∗

i in their standardized and centered form.

§3. Application to factorial designs

3.1. Definitions

Consider a random phenomenon of m factors that may be checked by the experimenter. We
have seen that the choice of the natural link function allows us to put the matrix tXX in place
of the initial matrix X tWX in the algorithm of Fisher scoring. So, our goal is now the find an
experimental configuration such that X tX has a simple form. The optimal situation is reached
when X tX is a diagonal matrix (i.e. when the design is orthogonal). We consider in the
following the two models given below:

(L) , ∀ i = 1...n , g (mi) = β0 +
m∑

j=1

βjxij ,

(I) , ∀ i = 1...n , g (mi) = β0 +
m∑

j=1

βjxij +
∑∑

j<l

βjkxijxil.

(L) and (I) are then two generalized linear models with a polynomial linear part, of degree one
for (L) and of degree two with interactions for (I) . Classicaly, we assume that the variables xij

are coded in a such ways that their values always belong to the interval [−1, 1] . In other words,
if a factor is associated to a variable X with extreme levels Xmin and Xmax, the associated
coded variable x is obtained by the following transformation (see the chapter 2 of Khuri and
Cornell [8]):

x =
2X − (Xmax + Xmin)

Xmax −Xmin

.

Then it is well known that every complete factorial design (i.e. constituted by all the vertices
of the cube [−1, 1]m) gives us an orthogonal configuration for the two models (L) and (I).
Nevertheless, using such designs is not possible when the number of factors m becomes high
(because of the 2m experimental units). So we also consider in the following some regular
fractions of these factorial designs (see Box and Hunter [2] and [3]). In other words, we are
now working with configurations given by:

1) 2m−k vertices of the cube [−1, 1]m ,
2) n0 central replications of the experimental domain.

We know that the matrix model X is of full rank (i.e. X tX is regular) if and only if we used a
regular fraction of resolution at least III for the model (L) and at least V for the model (I).
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3.2. Iterative treatment

In this part we are going to find the simplified form of the Fisher scoring algorithm used with
the natural link function and a complete factorial design or a regular fraction of it. We denote
by n the number of experiences (i.e. n = 2m−k +n0) and by D the design matrix (i.e. the n×m
matrix with the row i made up from the m coordinates of the i-th design point, so the matrix of
the xij). Let Dj (1 ≤ j ≤ m) be the j-th column of this matrix and ) the Hadamard product
operator (also called term to term product because if u, v ∈ IRn then u ) v ∈ IRn verifies ∀
i = 1 . . . n , (u) v)i = uivi). Denoting Qjl = Dj )Dl (1 ≤ j < l ≤ m), the model matrix is
then:

X = [1n | D1 . . . Dm] for the model (L) ,

X =
[
1n | D1 . . . Dm | Q12 . . . Q(m−1)m

]
for the model (I) .

Then it is well known that, if we use appropriate regular fraction (such that X is a full rank
matrix), these factorial designs are orthogonal for the model (L) or (I) and we have:

X tX = diag
(
2m−k + n0, 2

m−k, ... , 2m−k
)
.

This result implies, combined with relation (4) and lemma 1 and 2, the following form for the
components of the unknown vector β in the Fisher scoring algorithm:

Proposition 3. Consider the model (L) or (I) used with the natural link function. For a
complete factorial design or a regular fraction of resolution at least III, the Fisher scoring
algorithm is given for the model (L) by (with k ∈ N∗):

1) β
(k+1)
0 = β

(k)
0 +

1

2m−k + n0

n∑
i=1

y∗
i ,

2) ∀ j = 1...m , β
(k+1)
j = β

(k)
j +

1

2m−k

n∑
i=1

xijy
∗
i .

For a complete factorial design or a regular fraction of resolution at least V, the algorithm of
Fisher scoring for the model (I) verifies, in addition of the two previous relations:

3) ∀ j, l = 1...m with j < l , β
(k+1)
jl = β

(k)
jl +

1

2m−k

n∑
i=1

xijxily
∗
i .

Remark. These three results have a very simple expression. We can also note that factorial
designs have only two levels, so the values for the coded variables xij are only −1, 0 (for
possible central experiments) or 1.

3.3. Dispersion of the estimations

We know (see Green and Silverman [6]) that asymptotically the maximum likelihood estimator
of β has a Gaussian distribution and a dispersion given by:

Var β̂ = φ
(
X tWX

)−1
.

If φ is unknown then it can be estimated by means of pearson statistics. This result is very
interesting in our case because we know that X tWX is a diagonal matrix and the diagonal
elements are given in the last subsection. So we have the following proposition:
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Proposition 4. Consider the model (L) or (I) used with the natural link function and a com-
plete factorial design or an appropriate regular fraction (of resolution at least III for (L) and
at least V for (I)). The maximum likelihood estimator β̂ satisfies asymptotically the following
properties: its components are non-correlated, and its dispersion is given by:

Var β̂0 =
φ

2m−k + n0

and ∀ j, l = 1...m j < l , Var β̂j = Var β̂jl =
φ

2m−k
.

Remark. The dispersion parameter φ is needed in order to obtain these different dispersions.
This is not a serious problem in practice because the observations are often associated to usual
dispersions and then φ has a simple form (for example, φ = 1 for a binomial distribution, a
Poisson distribution, a negative-binomial distribution...).

3.4. Implementation of the algorithm

The implementation of the Fisher scoring algorithm is then very simple in our case, we only
have to apply iteratively results from proposition 3. No use of matricial calculus is needed, and
in particular we do not have to invert any matrix. The development of the algorithm is given by
figure 1. Note that the algorithm has to be initialized by judicious values for β(0). This can be
done, for example, by a classic linear regression on the transformed response (i.e. on the g (yi)
with g natural link function in place of the yi).

Initial choice of β(k) for k = 0
↓

1) Computation of the mi = g−1(xt
iβ)

↓
2) Computation of the y∗

i

↓
3) Computation of β(k+1)

↓
4) End of the treatment possible ?

↓
END : β̂ = β(k+1) ← yes ← → no → Increment k

Go to step 1

Figure 1 : Fisher scoring algorithm.

This iterative algorithm must also be stopped (step 4) and we can use many different conditions
to do that. It can be stopped when the likelihood seems to be non-increasing (i.e. when L

(k+1)
max <

L
(k)
max), when the likelihood seems to be constant (i.e. when |L(k+1)

max < L
(k)
max| < ε with ε small

positive real), when the estimated parameters seem to be constant (i.e. when ||β(k) − β(k+1)||
< ε where ‖.‖ is a chosen norm), etc...
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§4. Example: application to the Bernoulli distribution

Consider a first application with the case, very usual in practice, of binary responses. It cor-
responds, for example, to a medical experience where our goal is to predict the appearance or
not of a distension for the blood vessels in accordance with the injection of three different con-
stituents (called factors one, two and three in the following). We assume that every observed
response yi is a realization of a Bernoulli distribution of parameter pi (unknown) and we denote
0 when there is no distension, 1 in the other case. Recall that such a distribution belongs to the
exponential family because its density satisfies relation (1) with:

θi = ln
pi

1− pi

, v (θi) = − ln
(
1 + eθi
)

, φ = 1 and h (yi, φ) = I{0,1} (yi, φ) .

From the results of subsection 2.3 the natural link function associated to this distribution is g
with g (t) = arcsin (2t− 1) and then we can consider the following model (with mi = E Yi =
pi):

∀ i = 1...n , arcsin (2mi − 1) = β0 + β1xi1 + β2xi2 + β3xi3.

We assume that the experimenter has made the experiments corresponding to a complete facto-
rial design with two center points (the low number of factors allow us to consider the complete
design in our case). We have then a total of 10 experiences given in table 2. Recall that the
factors are in the coded form, so −1 is associated to the lowest quantity injected and +1 is
associated to the biggest (0 is then associated to the mean of these two quantities). Responses
given in table 2 are obtained by the following formula for the pi parameters:

∀ i = 1...n , pi = 0.2xi1 − 0.1xi2 − 0.1xi3 + 0.6.

In other words, we assume that the probabilities associated to each Bernoulli distribution can
be correctly fitted by a Taylor series of order one in the experimental domain. We also assume
that the effects of factors 2 and 3 are opposite (and lower) to the effect of the factor 1 on the
response. Table 2 gives the probabilities pi associated to each experimental unit (column pi)
and simulated results for the different responses (column yi).

Exp Fac. 1 Fac.2 Fac. 3 pi yi p̂i ŷi

1 1 1 1 0.60 1 0.54 (0.75) 1 (1)
2 −1 1 1 0.20 0 0.27 (0.00) 0 (0)
3 1 −1 1 0.80 1 1.00 (1.00) 1 (1)
4 1 1 −1 0.80 1 1.00 (1.00) 1 (1)
5 −1 −1 1 0.30 0 0.03 (0.00) 0 (0)
6 −1 1 −1 0.30 0 0.03 (0.00) 0 (0)
7 1 −1 −1 1.00 1 0.59 (1.00) 1 (1)
8 −1 −1 −1 0.60 1 0.60 (0.75) 1 (1)
9 0 0 0 0.60 1 0.57 (0.75) 1 (1)
10 0 0 0 0.60 0 0.57 (0.75) 1 (1)

Table 2 : Results for the complete factorial design.
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Now, we are going to fit a generalized linear model. If we have no information concerning the
choice for the initial values of the algorithm, we can take (for example):

β
(0)
0 = 1 , β

(0)
1 = β

(0)
2 = β

(0)
3 = 0.

Then the iterative treatment of proposition 3 leads us very quickly (in two iterations) to a
maximal likelihood obtained for:

β̂0 = 0.143 , β̂1 = 1.376 , β̂2 = −0.719 and β̂3 = −0.719.

In other words, the best model satisfies (∀ x1, x2 ∈ [−1, 1]):

p̂ (x1, x2) =
sin (0.143 + 1.376x1 − 0.719x2 − 0.719x3) + 1

2
.

Predicted values of the probabilities pi are given in table 2 (column p̂i) with the predicted
responses (column ŷi), that is the values of p̂i rounded to the nearest integer. We also present,
in brackets, results obtained by the classical analysis with the canonical link function (these
results come from the SAS software). We observe the good global quality of the results since
observed responses yi and predicted responses ŷi are always the same (except, of course, for
the two last experiences where it is impossible to predict at once 0 and 1). If we consider
probabilities pi associated to Bernoulli distributions we note, on one hand, that predictions are
very good for half of the experiments (i.e. experiences 1, 2, 8, 9 and 10). On the other hand,
these results are not so good for experiences 3 and 4 and they are bad for experiences 5, 6 and
7. These problems of prediction are principally due to the small number of experiences, and
also to the nature of the responses which give poor informations because they have only two
levels. We can finally note that the adjusted model allows us to find again the correct effect of
each factor (i.e. the factor 1 has a preponderant effect on the response and factors 2 and 3 have
equal effects, opposite to factor 1).

Note also that the choice of this natural link function gives us a robust estimation procedure.
Indeed we have verified with this example and also with other distributions (see Dossou-Gbete
and Tinsson [6] for more details) that estimations using the natural link function are very closed
to estimations using the classical canonical link function and moreover the natural link function
allows us, in general, to obtain faster convergence rate.
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