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STABILITY AND INSTABILITY INDUCED BY

TIME DELAY IN AN ERYTHROPOIESIS

MODEL

Mostafa Adimy and Fabien Crauste

Abstract. We study a mathematical model of erythropoiesis, that is the production of blood
cells under the influence of the hormone erythropoietin. Our model consists in a system
of two nonlinear delay differential equations, with the cell cycle duration as the delay. We
study the local asymptotic stability of the equilibria by using the characteristic equation of
the model and we show the existence of a local Hopf bifurcation.
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§1. Introduction

Biological phenomena occurring in human body, such as breathing, glucose/insulin regulation,
etc., involve complex behaviors (we refer to the book by Mackey and Glass [9] for further
details). Amongst these behaviors, oscillations, bifurcations and chaos are often observed in
biological processes.

Blood production system is one of the complex processes involved in the living. It takes
place in the bone marrow where pluripotent stem cells, the more immature cells, give birth,
throughout a series of division, to committed stem cells (white or red blood cells, platelets).
These cells finally divide in mature blood cells which enter the bloodstream.

Blood production has been studied mathematically since the end of the seventies. Mackey
[8], in 1978, proposed the first, to our knowledge, model of blood production. His model
consists in a system of two delay differential equations, where the delay corresponds to the cell
cycle duration. It has been studied more recently by Adimy and Pujo-Menjouet [3, 4], Adimy
and Crauste [2] and Pujo-Menjouet et al [11, 12]. In [12], the authors showed the existence of
a local Hopf bifurcation in the model of Mackey [8].

It is now well known that the production of blood cells is regulated by negative feedback
controls, mediated by hormones. However, the exact nature of these regulatory processes is
still not well known at this time. Amongst the hormones acting on blood production, some are
of main importance. This is the case of erythropoietin, usually known as Epo, a glycoprotein
hormone produced mainly in the kidney. What we call erythropoiesis is the production of blood
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cells (especially red blood cells) under the action of the hormone Epo. Erythropoietin acts as
a growth factor on blood cells. In fact, the concentration of Epo reacts to changes in oxygen
concentration in bloodstream. For example, a decrease in the concentration of oxygen (which
may be due to bleeding or moving to high altitudes) leads to a release of erythropoietin. The
control of Epo on blood production system triggers the production of blood cells, by acting on
pluripotent stem cells (see Adamson [1]). These cells divide and increase the production of
mature blood cells. By the same way, when the concentration of blood cells is too high (which
means that a lot of oxygen is carried by mature blood cells), then the negative feedback acts on
the concentration of erythropoietin to decrease the production of the hormone.

A mathematical model of erythropoiesis has been proposed by Belair et al [5] in 1995 and
studied by Mahaffy et al [10] in 1998. Their model consists in a system of partial differential
equations which reduce to a system of two delay differential equations. Reaction to bleeding
and stability of the equilibria of the model have been studied.

In this paper, we propose a new model of erythropoiesis. It consists in a system of two
nonlinear delay differential equations, describing the production of blood stem cells in the
bone marrow and the evolution of the Epo concentration (see Equations (2) and (3)). The
stem cells production is modelled by a positive function of the population density and the Epo
concentration, decreasing with respect to the cellular population and increasing with respect
to the hormone concentration. The negative feedback control on Epo is given by a monotone
decreasing function of the cellular population. In the next section, we present the model and we
study the existence of equilibria. In Section 3, we study the local asymptotic stability of these
equilibria. In particularly, we show the existence of a local Hopf bifurcation, with the delay as
the bifurcation parameter.

§2. The Model

Denote by N(t) the total population density (cells/kg) of stem cells. In fact, stem cells can
be either proliferating or quiescent [6], and N(t) denotes the population of resting cells (also
known as G0-cells). Proliferating cells are cells actually in the cell cycle: they divide a time
τ after their entrance in two daughter cells. Contrary to proliferating cells, G0-cells are in
a quiescent stage. They can differentiate in blood cells, which enter the bloodstream, or be
introduced in the proliferating phase. We denote by δ ≥ 0 the rate of disappearance of G0-
cells, which also includes the natural mortality. Resting cells represent the major part of the
stem cell population (about 95% of the stem cell population) and their behavior influence the
behavior of the entire population. This has already be noticed by Mackey [8], Pujo-Menjouet
et al [11, 12] and Adimy and Crauste [2]. We refer to these works for further details.

Denote by E(t) the erythropoietin concentration (mL/mU) at time t. The production rate
of the hormone erythropoietin (Epo) is controlled by a negative feedback, induced by the stem
cell population N(t), denoted by f . Typically, the function f is a monotone decreasing Hill
function,

f(N) =
a

1 + KN r
, (1)

often used in enzyme kinetics (see [5]). The parameters a > 0, K > 0 and r > 0 are deduced
from experimental data.
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The system we consider in this paper is

dN

dt
(t) = −δN(t) + g

(
N(t− τ), E(t− τ)

)
N(t− τ), (2)

dE

dt
(t) = −kE(t) + f(N(t)), (3)

where τ ≥ 0 is the cell cycle duration (or equivalently the length of the proliferating phase) and
k > 0 is the disappearance rate of the hormone Epo. The term g(N, E) controls the production
of stem cells under the action of Epo. It is an increasing function of the Epo concentration
E, because Epo acts as a growth factor on blood cell production, and a decreasing function of
the cellular population N . This control is induced by concentration and populations a time τ
earlier, that means, before stem cells entered the cell cycle.

The function g(N, E) is assumed to be nonnegative, nonconstant and continuously differ-
entiable. Moreover, it is supposed that

lim
N→+∞

g(N, E) = 0, for all E ≥ 0.

We are interested in the asymptotic stability of the equilibria of System (2)-(3). We say that
(N, E) is an equilibrium of System (2)-(3) if (N, E) is a solution of dN/dt = dE/dt = 0, that
is

δN = g(N, E)N, (4)

kE = f(N). (5)

By using (5), Equation (4) becomes

δN = g
(
N,

1

k
f(N)
)
N.

We deduce that either N = 0 or N is solution of

g
(
N,

1

k
f(N)
)

= δ. (6)

Since the function f is decreasing, the function N �→ g
(
N,

1

k
f(N)
)

is decreasing for N ≥ 0.

Moreover,

g
(
0,

1

k
f(0)
)

> 0 and lim
N→+∞

g
(
N,

1

k
f(N)
)

= 0. (7)

By using (5), (6) and (7), we can conclude to the existence of at most two equilibria for System
(2)-(3). This is done in the next proposition.

Proposition 1. (i) If

g
(
0,

1

k
f(0)
)
≤ δ or δ = 0,

System (2)-(3) has a unique equilibrium (0, f(0)/k).
(ii) If

0 < δ < g
(
0,

1

k
f(0)
)
, (8)
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System (2)-(3) has two distinct equilibria, (0, f(0)/k) and (N∗, E∗), where N∗ > 0 is the
unique solution of the equation

g
(
N∗,

1

k
f(N∗)
)

= δ,

and

E∗ =
1

k
f(N∗).

The equilibrium (0, f(0)/k) of System (2)-(3) corresponds to a critical biological case: the
population dies out and the concentration of erythropoietin is saturated, inhibiting the produc-
tion of blood cells. We focus in the next section on the local stability of the equilibria given by
Proposition 1.

§3. Local Asymptotic Stability

Denote by (N, E) one of the two equilibria of System (2)-(3), defined in Proposition 1. In
order to study the local stability of the equilibrium (N, E), we linearize System (2)-(3) around
this equilibrium. We set x(t) = N(t) − N and y(t) = E(t) − E, for t ≥ 0. For the sake
of simplicity, we still use the variables N and E instead of x and y. The linearized system of
(2)-(3) is

dN

dt
(t) = −δN(t) + AN(t− τ) + BE(t− τ), (9)

dE

dt
(t) = −kE(t) + f ′(N)N(t), (10)

where A and B are explicitly given by

A = g(N, E) + N
∂g

∂N
(N, E) and B = N

∂g

∂E
(N, E).

One can notice that B ≥ 0. We write System (9)-(10) in the form⎛⎜⎝
dN

dt
(t)

dE

dt
(t)

⎞⎟⎠ =

(
−δ 0

f ′(N) −k

)(
N(t)

E(t)

)
+

(
A B

0 0

)(
N(t− τ)

E(t− τ)

)
.

So the characteristic equation is given by

(λ + k)(λ + δ − Ae−λτ )−Bf ′(N)e−λτ = 0. (11)

We recall that the equilibrium (N, E) is locally asymptotically stable if all roots of (11) have
negative real part. Therefore, we are going to investigate the sign of the real part of roots of
(11).

First, we consider the case τ = 0. When τ = 0, the characteristic equation (11) reduces to
a second degree polynomial

λ2 + (k + δ − A)λ + k(δ − A)−Bf ′(N) = 0. (12)

By applying the Routh-Hurwitz Criterion, we obtain the following lemma.
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Lemma 2. All roots of (12) have negative real parts if and only if k + δ > A and kδ >
Ak + Bf ′(N).

We assume, in the sequel, that k + δ > A and kδ > Ak + Bf ′(N). In this case, the
equilibrium is locally asymptotically stable when τ = 0. Hence, if instability occurs for a par-
ticular value of τ , a characteristic root of (11) must intersect the imaginary axis (see Rouché’s
Theorem [7, p.248]).

Suppose that (11) has a purely imaginary root iω, with ω ∈ R. Then, by separating real and
imaginary parts in (11), we have

−ω2 + kδ = (Ak + Bf ′(N)) cos(ωτ) + Aω sin(ωτ), (13)

(k + δ)ω = Aω cos(ωτ)− (Ak + Bf ′(N)) sin(ωτ). (14)

Note that if iω is a characteristic root of (11), then −iω is also a characteristic root. Moreover,
since kδ > Ak + Bf ′(N), ω = 0 cannot be a solution of (13)-(14). Then, we can assume that
ω > 0.

Adding up the squares of Equations (13) and (14), we obtain

ω4 +
[
(k + δ)2 − A2 − 2kδ

]
ω2 + (kδ)2 − (Ak + Bf ′(N))2 = 0. (15)

We set

p = k2 + δ2 − A2, q = (kδ)2 − (Ak + Bf ′(N))2 and ξ = ω2.

Equation (15) becomes
h(ξ) := ξ2 + pξ + q = 0. (16)

Lemma 3. (i) If q < 0 or q = 0 and p < 0, Equation (16) has exactly one positive root.
(ii) If q > 0, p < 0 and p2 > 4q, Equation (16) has two positive roots.
(iii) If p < 0 and p2 = 4q, Equation (16) has only one root which is positive.
(iv) If q ≥ 0 and p ≥ 0 or p < 0 and p2 < 4q, Equation (16) has no real roots or nonpositive
roots.

We suppose that one of the conditions (i), (ii) or (iii) of Lemma 3 is satisfied. Let ξl

(l = 1, 2 in case (ii) and l = 1 in cases (i) and (iii)) be the real positive roots of (16). We set
ωl =

√
ξl > 0. Then ωl are the only positive solutions of (15). By using Equations (13) and

(14), we obtain, for l = 1, 2,

cos(φ(ωl)− ωlτ) =
−ω2

l + kδ√
(Ak + Bf ′(N))2 + (Aωl)2

,

and

sin(φ(ωl)− ωlτ) =
(k + δ)ωl√

(Ak + Bf ′(N))2 + (Aωl)2

,

with

φ(ωl) = arcsin

(
Aωl√

(Ak + Bf ′(N))2 + (Aωl)2

)
.
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One can easily check, by using (15), that∣∣∣∣∣ −ω2
l + kδ√

(Ak + Bf ′(N))2 + (Aωl)2

∣∣∣∣∣ ≤ 1 and

∣∣∣∣∣ (k + δ)ωl√
(Ak + Bf ′(N))2 + (Aωl)2

∣∣∣∣∣ ≤ 1.

We define the nonnegative sequences {τ l
1,j} and {τ l

2,j}, for j ∈ N \ {0} and l = 1, 2, by

τ l
1,j =

1

ωl

[
φ(ωl)− arcsin

(
(k + δ)ωl√

(Ak + Bf ′(N))2 + (Aωl)2

)
+ 2jπ

]
,

and

τ l
2,j =

1

ωl

[
φ(ωl) + arcsin

(
(k + δ)ωl√

(Ak + Bf ′(N))2 + (Aωl)2

)
+ (2j − 1)π

]
.

Set
τ0 = τ l0

·,j0 := min
l=1,2; j∈N\{0}

{τ l
1,j, τ

l
2,j} and ω0 = ωl0 . (17)

Lemma 4. For τ = τ0, ±iω0 is a pair of simple purely imaginary roots of (11). Moreover,

dRe(λ)

dτ

∣∣∣∣
τ=τ0

> 0 if and only if h′(ω2
0) > 0.

Proof. Consider the branch of characteristic roots λ(τ) = ν(τ) + iω(τ), such that

ν(τ0) = 0 and ω(τ0) = ω0.

From (11), we have[
2λ + k + δ +

(
τ [A(λ + k) + Bf ′(N)]−A

)
e−λτ
]dλ

dτ
= −λ[A(λ + k) + Bf ′(N)]e−λτ . (18)

If we suppose, by contradiction, that λ(τ0) is not a simple characteristic root of (11), we obtain

−iω0[A(iω0 + k) + Bf ′(N)]e−iω0τ0 = 0.

By separating real and imaginary parts, this leads to

Aω2
0 cos(ω0τ0)− ω0(Ak + Bf ′(N)) sin(ω0τ0) = 0,

ω0(Ak + Bf ′(N)) cos(ω0τ0) + Aω2
0 sin(ω0τ0) = 0.

(19)

Since ω0 > 0, by using (13) and (14), (19) reduces to

k + δ = 0,

ω2
0 = kδ.

On one hand, if k + δ �= 0 we obtain a contradiction. On the other hand, if k + δ = 0, then

ω2
0 = −δ2 ≤ 0.



Stability and instability induced by time delay in an erythropoiesis model 9

Thus, ω0 = 0, which gives a contradiction. We conclude that iω0 is always a simple root of
(11).

From (18), we have

(
dλ

dτ

)−1

=
2λ + k + δ +

(
τ [A(λ + k) + Bf ′(N)]− A

)
e−λτ

−λ[A(λ + k) + Bf ′(N)]e−λτ
,

=
A− eλτ (2λ + k + δ)

λ
(
A(λ + k) + Bf ′(N)

) − τ

λ
.

Moreover, Equation (11) implies that

eλτ =
A(λ + k) + Bf ′(N)

(λ + k)(λ + δ)
.

Then,

sign

{
dRe(λ)

dτ

} ∣∣∣∣
τ=τ0

= sign

{
Re

(
dλ

dτ

)−1
}∣∣∣∣

τ=τ0

,

= sign

{
Re

(
A− eλτ (2λ + k + δ)

λ
(
A(λ + k) + Bf ′(N)

))} ∣∣∣∣
τ=τ0

,

= sign

{
Re

(
A− eiω0τ0(2iω0 + k + δ)

iω0

(
A(iω0 + k) + Bf ′(N∗)

))} ,

= sign

{ −A2

A2ω2
0 + (Ak + Bf ′(N))2

+
(k + δ)2 + 2(ω2

0 − kδ)

(k + δ)2ω2
0 + (ω2

0 − kδ)2

}
.

By using Equation (15), we obtain

(k + δ)2ω2
0 + (ω2

0 − kδ)2 = A2ω2
0 + (Ak + Bf ′(N))2.

Thus,

sign

{
dRe(λ)

dτ

} ∣∣∣∣
τ=τ0

= sign

{
2(ω2

0 − kδ) + (k + δ)2 − A2

A2ω2
0 + (Ak + Bf ′(N))2

}
,

= sign {2ω2
0 + p} ,

= sign {h′(ω2
0)} .

This concludes the proof.

This result, together with Lemmas 2 and 3, allows us to prove the main result of this paper,
stated in the next theorem.

Theorem 5. Assume that k + δ > A and kδ > Ak + Bf ′(N). If Condition (iv) in Lemma 3
is satisfied, the equilibrium (N, E) is locally asymptotically stable for all values of τ ≥ 0. If
either Conditions (i) or (ii) of Lemma 3 hold, then there exists a critical value τ0 > 0, defined
in (17), such that the equilibrium (N, E) is locally asymptotically stable when τ ∈ [0, τ0), and
a Hopf bifurcation occurs at (N, E) when τ = τ0.
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Proof. From Lemma 2, all the characteristic roots of (11) have negative real parts when τ = 0.
If Condition (iv) of Lemma 3 is satisfied, then (11) has no purely imaginary root. Consequently,
since all the characteristic roots of (11) have negative real part when τ = 0, Rouché’s Theorem
[7, p.248] implies that all characteristic roots of (11) have negative real part for all τ ≥ 0.

Suppose now that either Condition (i) or (ii) of Lemma 3 holds. Rouché’s Theorem [7,
p.248] implies that all characteristic roots of (11) have negative real parts while τ < τ0, where
τ0 is defined in (17). Consequently, (N, E) is locally asymptotically stable when τ ∈ [0, τ0).
When τ = τ0, Lemma 4 implies that (11) has a pair of simple purely imaginary roots ±iω0.
Moreover, from Conditions (i) and (ii) of Lemma 3, we obtain h′(ω2

0) �= 0. By contradiction,
assume that

dRe(λ)

dτ
(τ) < 0,

for τ < τ0 and τ close to τ0. Then (11) has a characteristic root λ(τ) = ν(τ) + iω(τ) with
ν(τ) > 0. This contradicts the fact that all roots of (11) have negative real parts when τ < τ0.
Hence, we obtain that

dRe(λ)

dτ

∣∣∣∣
τ=τ0

> 0.

This yields to the existence of a Hopf bifurcation at (N, E) when τ = τ0. This ends the
proof.

Remark 1. When Condition (iii) of Lemma 3 holds, the equilibrium (N, E) is locally asymp-
totically stable while τ ∈ [0, τ0). However, when τ = τ0, we cannot conclude to stability or
instability of the equilibrium. In this case, h′(ω2

0) = 0 so, from Lemma 4, (dRe(λ)/dτ)(τ =
τ0) = 0.

With values of the parameters satisfying (8), it is shown in Figure 1 that a Hopf bifurcation
occurs at (N∗, E∗) for τ = 3.9 days, with a period about 22 days. In Figure 2, the solutions are
shown in the (N, E)-plan: one can see that the solutions reach a limit cycle.

The function g in computer simulations is a Hill function (see Mackey [8]),

g(N, E) = β0
θnE

θn + Nn
,

where β0 > 0, θ ≥ 0 and n > 0 are given by experimental data (see [8, 11, 12]). The function
f is defined by (1).

Corollary 6. The equilibrium (0, f(0)/k) of System (2)-(3) is locally asymptotically stable for
all τ ≥ 0 when

g
(
0,

1

k
f(0)
)

< δ. (20)

Proof. Let N = 0. Then A = g(0, f(0)/k) and B = 0. Assume that (20) holds, that is δ > A.
Then k + δ > A and kδ > Ak = Ak + Bf ′(0). Moreover, q > 0 and p > 0. Hence, Condition
(iv) of Lemma 3 holds. Theorem 5 leads to the local asymptotic stability of (0, f(0)/k) for all
values of τ ≥ 0.
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Figure 1: A Hopf bifurcation occurs at the equilibrium (N∗, E∗) for τ = 3.9 days. The pa-
rameters values are δ = 0.05, β0 = 6.5, θ = 1.62 × 108, n = 3 (see [8, 11, 12]), k = 0.28,
a = 6570, K = 0.0382 and r = 6.96 (see [5]). A periodic solution appears with a period close
to 22 days. The solid line is for the resting phase population N(t) and the dashed one is for the
Epo concentration E(t).

Figure 2: With the same parameters values than in Figure 1, the solutions are shown in the
(N, E)-plane. The solutions reach a limit cycle.
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