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VEHICLE ROUTING PROBLEMS WITH

SOFT TIME WINDOWS:
AN OPTIMIZATION BASED APPROACH

Herminia I. Calvete, Carmen Galé,
María José Oliveros and Belén Sánchez-Valverde

Abstract. The classical vehicle routing problem involves to design a set of routes for a fleet
of vehicles based at one central depot that is required to service a number of geographically
dispersed customers, while minimizing the total travel distance or the total distribution
cost. Each route originates and terminates at the central depot and customers’ demand are
known.

In many practical distribution problems, a time window is associated to each customer,
defining a time interval in which the customer should be supplied. This is the vehicle
routing problem with time windows. This works investigates the use of Goal Programming
to modeling a vehicle routing problem with soft delivery time window constraints. In this
problem vehicles are allowed to service customers before and after the earliest and latest
time windows bounds. This relaxation comes at the expense of appropriate penalties that
reflect the effect that time windows violations have on the customers’ satisfaction.
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§1. Introduction

In such a competitive world as the current one, it is evident that companies should make opera-
tional and strategic decisions in order to optimize and to manage the processes involved in their
supply chains more efficiently. Amongst them, the delivery of commodities at low cost, with
high quality of service and with short delay times. This warranties not only a good service to
customers but a saving in warehousing and distribution costs. The problem of physical distri-
bution of goods to customers’ locations is of particular importance since it account for a large
proportion of the overall operational costs of a producer. Hence, effective and efficient manage-
ment of transportation and distribution of goods is becoming increasingly important both from
the point of view of theoretical research and from the point of view of practical applications.

Regarding these planning operations, three different decision problems can be identified.
First one, to cluster customers in geographically areas. Otherwise, the complexity of the result-
ing model, in terms of number of variables and constraints, severely affects the efficiency of
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the algorithms that can be employed in practical situations to generate and evaluate feasible so-
lutions and, eventually, obtain an optimal o close to optimal solution. Second decision problem
is to design, over a given planning horizon, an optimal schedule to satisfy customers’ demand.
Finally, third decision problem is to determine an optimal set of routes to supply from a central
depot to the customers in its geographical area. This is the problem specifically considered in
this work.

These problems are generically known as Vehicle Routing Problems (VRP). The classical
VRP consists in determining the best set of routes for a fleet of vehicles based at a single central
depot to distribute goods to a set of customers geographically dispersed, while minimizing the
total travel distance or the total distribution cost. Due to its importance, there is a vast literature
that addresses modeling and solution aspects of the VRP. Every paper presents a view of the
problem, considering different features of the system and a different approach to solving the
problem (see [2, 3, 6, 7, 16] and references therein).

When, in addition, bounds exist on the moments of the day in which deliveries should take
place these problems are known as Vehicle Routing Problems with Time Windows (VRPTW).
In these problems every customer has a time interval (time window) associated wherein he/she
should be supplied. These constraints are hard constraints when a route is not feasible if the
service of a customer either starts before the earliest time or ends after the latest time of the
day established by the time window ([4, 5, 8, 9, 11, 14]). In other cases, both lower and upper
bounds of the time window need not be satisfied, but can be violated at a penalty. These are
Vehicle Routing Problems with Soft Time Windows (VRPSTW) [1, 10, 12, 15].

All these combinatorial optimization problems have been proven to be NP-hard and only
relatively small instances can be solved to optimality. Methodology involves the use of branch
and bound methods, Lagrangian relaxation, etc. For bigger problems, researchers usually focus
on heuristic and meta-heuristic (tabu search, genetic algorithms, simulated annealing) methods
to derive approximate solutions of acceptable quality in reasonable computational time. In
general, heuristic methods construct routes step-by-step, giving criteria to identify the following
customer to be added to the route under construction and the insertion point.

In this work we propose to model the WRPSTW as a mixed-integer goal programming
problem. In the objective function, penalties are assigned to deviational variables which re-
flect the violation of time windows. These penalties weight the effect of not satisfying the
customers’ preferences on the interval time during which the delivery should have taken place.
This approach extends the model proposed by [12], since the number of vehicles is not required
to be one, but is a variable which is determined in the optimization process. Moreover, service
can either start before the earliest time or ends after the latest time of the day fixed by the cus-
tomer. This optimization model is useful when planning daily distribution from a central depot
to a small number of customers. In addition, this model allows us to evaluate the consequences
of assigning different penalties to the violation of time windows depending on the customer.

The remainder of the paper is organized as follows. We start in Section 2 by presenting a
comprehensive description of the problem and formulating the goal programming model. In
Section 3 a small instance is presented in which there is a single central depot supplying eleven
customers. Based on this example, we show the difficulties (in terms of computational time
involved) of getting an exact optimal solution of the model. Finally, some ideas for future work
are given.
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§2. Model formulation

As previously mentioned we consider the problem of delivering a large number of goods, very
different in weight and volume, from a single central depot to a number of geographically
dispersed customers. These customers pose demands for goods with a specified frequency and
act as sales points for final customers. We assume that customers’ demand is known when
delivery routes are established. Although goods can be evaluated in terms of weight, volume
or other characteristics of interest, in the proposed model only weight is relevant. The travel
time between the central depot and each customer’s location, as well as between each pair of
customer’s locations is also known.

Let G = [N ,A] be a directed network associated to the system, where N = {1, . . . , n} is
the set of nodes (each representing the central depot or a customer’s location) andA = {(i, j) :
i, j ∈ N} is the set of directed arcs (each representing a direct connection). Index 1 refers to
the central depot, while indices 2 to n refer to the customers.

Let cij denote the cost and tij denote the travel time associated with going from node i to
node j through arc (i, j).

Each customer i poses a demand qi and requires a service time si. Notice that, in general,
service time is a function of demand si = si(qi). Moreover, each customer i has established an
interval [ei, li] which indicates his/her preferences regarding the moment of the day in which
he/she should be supplied. The lower bound ei indicates the earliest time in which the service
of customer i should start. Similarly, the upper bound li indicates the latest time in which
the service of customer i should finish. Besides, we assume that deliveries cannot be split up
amongst vehicles, that is to say, each customer is served by a single vehicle.

To deliver goods there exists a fleet of V vehicles with known capacity. Notice that V only
indicates the maximum number of vehicles that can be used for deliveries. The actual number
of vehicles that will be used is one of the variables of the model. Vehicles are initially located
at the central depot. Moreover, the route of each vehicle starts and finishes at the central depot.
Let Ck denote the capacity of the vehicle k and wk the fixed cost associated with actually using
the vehicle, k = 1, . . . , V .

The purpose of the model is to determine the number of vehicles which should be used
to supply the customers and to design the set of vehicle routes to minimize operational costs,
while meeting the preferences of customers regarding the time of the day in which they should
be supplied. The goals of the model are:

(1) minimize total cost, and

(2) satisfy time window preferences of customer i, i = 2, . . . , n.
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To formulate the model we define the following variables:

xk
ij =

{
1, if vehicle k travels directly from node i to node j;
0, otherwise.

zk =

{
1, if vehicle k is actually used;
0, otherwise.

ai = arrival time (service starting) to customer i.

pi = departure time (service finishing) from customer i.

pk
1 = departure time from the central depot of vehicle k.

We assume that delivery starts as soon as the vehicle arrives to the customer and that the
vehicle leaves the customer as soon as the delivery has been completed. Hence

pi = ai + si, i = 2, . . . , n

Moreover, in the goal programming model, g+
i , g̃+

i and ĝ+ are deviational variables repre-
senting the amount by which we numerically exceed the corresponding goal and g−

i , g̃−
i are

deviational variables representing the amount by which we are numerically under the corre-
sponding goal. Finally, Ĥ , Hi y H̃i denote penalties per unit of deviation from each goal and
Z stands for a lower bound on the total operational cost of delivery.

Given the above defined variables, the problem can be formulated as follows:

min Ĥĝ+ +
n∑

i=2

Hig
−
i +

n∑
i=2

H̃ig̃
+
i

subject to

n∑
i=1

V∑
k=1

xk
ij = 1 j = 2, . . . , n (1)

n∑
j=1

V∑
k=1

xk
ij = 1 i = 2, . . . , n (2)

xk
ij − zk ≤ 0 i, j = 1, . . . , n (3)

n∑
j=2

xk
1j ≤ 1 k = 1, . . . , V (4)

n∑
i=2

xk
i1 ≤ 1 k = 1, . . . , V (5)

n∑
i=1

xk
ir −

n∑
j=1

xk
rj = 0 r = 1, . . . , n; k = 1, . . . , V (6)
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n∑
i=2

qi

n∑
j=1

xk
ij ≤ Ck k = 1, . . . , V (7)

pj − pk
1 + (1− xk

1j)M ≥ sj + t1j j = 2, . . . , n; k = 1, . . . , V (8)

pj − pk
1 − (1− xk

1j)M ≤ sj + t1j j = 2, . . . , n; k = 1, . . . , V (9)

pj − pi + (1− xk
ij)M ≥ sj + tij i, j = 2, . . . , n; k = 1, . . . , V(10)

pj − pi − (1− xk
ij)M ≤ sj + tij i, j = 2, . . . , n; k = 1, . . . , V(11)

pi + g−
i − g+

i = ei + si i = 2, . . . , n (12)

pi + g̃−
i − g̃+

i = li i = 2, . . . , n (13)

V∑
k=1

∑
(i,j)∈A

cijx
k
ij +

V∑
k=1

wkzk − ĝ+ = Z (14)

xk
ij = 0, 1, zk = 0, 1 i, j = 1, . . . , n; k = 1, . . . , V

pk
1, pi, g−

i , g+
i , g̃−

i , g̃+
i , ĝ+ ≥ 0, i = 2, . . . , n; k = 1, . . . , V

Constraint (1) ensures that only a vehicle arrives to customer j. Constraint (2) ensures that
only a vehicle leaves customer i. Constraint (3) ensures that all used vehicles are payed for.
Constraint (4) imposes that all vehicles leave from the central depot. Constraint (5) imposes
that all vehicles return to the central depot. Constraint (6) is the typical flow conservation
equation that ensures the continuity of each vehicle route. Constraint (7) ensures that the total
load allocated to vehicle k does not exceed its capacity.

Constraints (8), (9), (10) and (11) guarantee the feasibility of the schedule for each vehicle.
Constraints (12) and (13) are goal programming constraints on time window preferences of
customers. Constraint (14) allows us to assign a penalty to a deviation from a targeted total
delivery cost Z. In the previous setting it is implied that variables xk

ii, i = 1, . . . , n are not
considered or, equivalently, they are equal to zero.

The proposed model for the VRPSTW is a mixed-integer goal programming problem with
0-1 variables, which can be solved by applying usual techniques [13]. It is worth noting that
computational time needed to exactly solve this kind of problems strongly depends on the
number of 0-1 variables involved.

When all vehicles are identical the model can be simplified, since it is not necessary to
identify the kind of vehicle which is going from the customer i to the customer j through
the connection (i, j). Hence, the number of 0-1 variables dramatically decreases since it is
enough to define a single 0-1 variable xij associated with each arc (i, j). This reduction makes
it possible to solve the model with a larger number of customers in a reasonable amount of
computational time.
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Table 1: Customer data

C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 10 C 11

qi 700 420 520 200 160 600 550 750 670 1180 650
si 35 21 26 10 8 30 28 37 34 60 33
ei – 7 h. 15 h. 15 h. 7 h. – 7 h. 7 h. – 15 h. 15 h.
l1 – 8 h. 16 h. 16 h. 8 h. – 8 h. 8 h. – 16 h. 16 h.

Table 2: Travel times tij

C D C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 10 C 11

C D 0
C 1 70 0
C 2 49 82 0
C 3 90 130 51 0
C 4 91 47 48 90 0
C 5 76 116 37 17 76 0
C 6 73 59 110 155 107 141 0
C 7 74 135 114 156 106 142 85 0
C 8 85 143 125 167 167 152 85 10 0
C 9 117 157 157 198 205 184 99 42 35 0
C 10 50 107 86 128 128 113 114 46 56 58 0
C 11 73 42 94 143 90 128 20 42 104 118 110 0

§3. Illustrative case

We consider the problem of delivering goods from a central depot to eleven customers geo-
graphically dispersed, i.e. the network has twelve nodes (see the geographical distribution, for
instance, in figure 1). Products are loaded on appropriate vehicles at the central depot and,
afterwards, they are transported via a road network to the customers’ locations. At each loca-
tion, goods demanded by the customer are unloaded from the vehicle, and then vehicles travel
to the next customers’ location where the process is repeated. After all deliveries have been
performed, vehicles return to the central depot.

The model’s input data (demands, service times and time windows) are displayed in table 1.
The symbol ‘-’ stands for the no existence of time window. Travel times tij are given in table 2.
The fleet of vehicles is homogeneous. For each vehicle, the capacity is 3000 and the fixed cost
is 100. Moreover, cij = 0.2 tij . Notice that at least three vehicles are needed to perform the
deliveries since the total demand amounts to 6400.

The model was solved by using Lingo 8.0 and run on a PC Pentium 4, 1.4GHz, 512MB
under Windows XP. The bound Z was obtained by solving a classical VRP, that is to say, all
constraints related to the moment of the day in which delivery should take place have been
eliminated. In addition, the objective function minimize the total operational cost (routes’ cost
plus vehicles’ cost). This problem has 145 variables, from which 133 are binary variables. It
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took 5 seconds to get the optimal solution. Total cost is 449 and three vehicles are used. Routes
are shown in figure 1-(a).

When time windows are hard, the model has 157 variables, from which, as above, 133
are binary variables. It took 17 seconds to get the optimal solution. Total cost is 916 and six
vehicles are used. Routes are displayed in figure 1-(b). Notice that in this case total cost is
more than twice the cost when there are not time window constraints involved.

To solve the goal programming model proposed in the paper, we chose the following penal-
ties: Ĥ = 1 and Hi = H̃i = 10, i = 2, . . . , 12. This problem has 206 variables, from which
133 are binary variables. It took 5 minutes to get the optimal solution. Five vehicles are used.
The routes are shown in figure 2-(a). Every customer is supplied according to his/her prefer-
ences, i.e. within his/her time window, except for customer 3 whose delivery starts six minutes
before the earliest time preferred by this customer. Total cost is 798,4. Notice that we save a
13% of the cost by allowing that the delivery to customer 3 starts six minutes early.

If, in addition, we impose that at most four vehicles are used, it took 7 minutes 3 seconds
to get the optimal solution. Routes are displayed in figure 2-(b). In this case, the delivery of
customer 3 starts two minutes before the earliest time and the deliveries of customers 6 and 9
end four and forty six minutes after the latest time, respectively. Total cost is 657,6, that is to
say, 28% less.

It is worth pointing out that penalties in the objective function affect the computational time
needed to get an optimal solution. For instance, if penalties are Ĥ = 10 y Hi = H̃i = 1, i =
2, . . . , 12, then it took 6 minutes 27 seconds to solve the VRPSTW. Similarly, if penalties are
Ĥ = 1 y Hi = H̃i = 1, i = 2, . . . , 12, then 23 minutes 12 seconds are required to get an
optimal solution.

We have also solved problems with up to 15 customers, but the computational time needed
to get an optimal solution increases very quickly. For instance, considering always that all
penalties are equal to 1, when the network involves 13 nodes it took 23 minutes to get an
optimal solution; if there are 14 nodes more than 1 hour and 30 minutes is needed; if there are
15 nodes more than 9 hours are needed; and, finally, it took more than 53 hours to solve an
example with 16 nodes. Clearly, this is not very appealing when using the model to handle real
systems.

When the fleet of vehicles is not homogeneous, the number of 0-1 variables involved is so
large that getting an exact optimal solution of the model is not efficient from the point of view
of practical applications. For example, the resolution of a classical VRP to compute Z in a
model with three vehicles, which involves 434 variables from which 399 are binary variables,
was abort after more than 1 hour and 30 minutes of running time.

Therefore, future work should consider an approach that combines heuristics and optimiza-
tion, which allows us to obtain optimal solutions or approximate optimal solutions in an ac-
ceptable amount of computational time. This will make possible to design a decision support
system which can be used in real time to determine delivery routes in more complex real life
applications. We also think that a two-phase approach which, (1) computes feasible routes
from the point of view of driving time involved and, (2) takes into account preferences on time
windows, might be efficient. Notice that in most of real systems with long distances between
customers, routes do not contain a lot of customers, which allows us to infer that the set of
feasible routes can be efficiently obtained.
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Figure 1: (a) Minimum cost routes. (b) Routes with hard time windows.
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Figure 2: (a) Routes with soft time windows. (b) Routes with at most 4 vehicles.



Vehicle routing problems with soft time windows 303

Acknowledgements

This research work has been supported by Spanish Contract IBE2002-CIEN-03.

References

[1] BALAKRISHNAN, N. Simple heuristics for the vehicle routing problem with soft time windows.
J. of the Operational Research Society 44, 3 (1993), 279–287.

[2] BALL, M., MAGNANTI, T., MONMA, C., AND NEMHASUSER, G., Eds. Network Routing. Hand-
book in Operations Research and Management Science vol. 8. North-Holland, Amsterdam, 1995.

[3] CORDEAU, J., GENDREAU, M., LAPORTE, G., POTVIN, J., AND SEMET, F. A guide to vehicle
routing heuristics. J. of the Operational Research Society 53 (2002), 512–522.

[4] CORDEAU, J., LAPORTE, G., AND MERCIER, A. A unified tabu search heuristic for vehicle
routing problems with time windows. J. of the Operational Research Society 52 (2001), 928–936.

[5] DESROCHERS, M., DESROSIERS, J., AND SOLOMON, M. A new optimization algorithm for the
vehicle routing problem with time windows. Operations Research 40 (1992), 342–354.

[6] GENDREAU, M., LAPORT, G., AND POTVIN, J. Vehicle routing: modern heuristics. In Local
Search in Combinatorial Optimization, E. Aarts and J. Lenstra, Eds. Wiley, London, 1997, pp. 311–
336.

[7] GOLDEN, B., AND ASSAD, A., Eds. Vehicle routing: Methods and Studies. Elsevier Science
Publishers, Amsterdam, 1988.

[8] HOMBERGER, J., AND GEHRING, H. Two evolutionary metaheuristics for the vehicle routing
problem with time windows. INFOR 37 (1999), 297–318.

[9] IOANNOU, G., KRITIKOS, M., AND PRASTACOS, G. A greedy look-ahead heuristic for the
vehicle routing problem with time windows. J. of the Operational Research Society 52 (2001),
523–537.

[10] IOANNOU, G., KRITIKOS, M., AND PRASTACOS, G. A problem generator-solver heuristic for
vehicle routing with soft time windows. Omega 31 (2003), 41–53.

[11] KOHL, N., AND MADSEN, O. An optimization algorithm for the vehicle routing problem with
time windows based upon lagrangian relaxation. Operations Research 45 (1997), 395–406.

[12] MIN, H. A multiobjective vehicle routing problem with soft time windows: The case of a public
library distribution system. Socio-Economic Planning Science 25, 3 (1991), 179–188.

[13] NEMHAUSER, G., AND WOLSEY, L. Integer and Combinatorial Optimization. John Wiley and
Sons, New York, 1999.

[14] SOLOMON, M. Algorithms for the vehicle routing and scheduling problem with time windows
constraints. Operations Research 35 (1987), 254–265.

[15] TAILLARD, E., BADEZU, P., GENDREAU, M., GUERTIN, F., AND POTVIN, J. A tabu search
heuristic for the vehicle routing problem with soft time windows. Transportation Science 31, 2
(1997), 170–186.



304 H.I. Calvete, C. Galé, M.J. Oliveros and B. Sánchez-Valverde

[16] TOTH, P., AND VIGO, D., Eds. The vehicle routing problem. SIAM Monographs on Discrete
Mathematics and Applications, vol 9, l, 2002.

Herminia I. Calvete
Dpto. de Métodos Estadísticos
Facultad de Ciencias
Edificio B
Universidad de Zaragoza
Pedro Cerbuna, 12
50009 Zaragoza
Spain
herminia@unizar.es

Carmen Galé
Dpto. de Métodos Estadísticos
Centro Politécnico Superior
Edificio Torres Quevedo
Universidad de Zaragoza
María de Luna, 3
50015 Zaragoza
Spain
cgale@unizar.es

María José Oliveros
Dpto. de Ingeniería de Diseño y Fabricación
Centro Politécnico Superior
Edificio Torres Quevedo
Universidad de Zaragoza
María de Luna 3
50015 Zaragoza
Spain
mjoliver@unizar.es

Belén Sánchez-Valverde
Dpto. de Métodos Estadísticos
EUITI
Edificio Torres Quevedo
Universidad de Zaragoza
María de Luna, 3
50015 Zaragoza
Spain
belensv@unizar.es


