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OPTIMALITY CONDITIONS FOR THE

LINEAR FRACTIONAL/QUADRATIC

BILEVEL PROBLEM

Herminia I. Calvete and Carmen Galé

Abstract. Bilevel programs are optimization problems which have a subset of their vari-
ables constrained to be an optimal solution of another problem parameterized by the re-
maining variables. They have been applied to decentralized planning problems involving
a decision process with a hierarchical structure.

This paper considers the linear fractional/quadratic bilevel programming (LFQBP)
problem, in which the first level objective function is linear fractional, the second level
objective function is quadratic and the common constraint region is a polyhedron. For this
problem, optimality conditions are derived based on Karush-Kuhn-Tucker conditions and
duality theory.
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§1. Introduction

Bilevel programming involves two optimization problems where the constraint region of the
first level problem is implicitly determined by another optimization problem. In terms of mod-
eling, bilevel problems are programs which have a subset of their variables constrained to be
an optimal solution of another problem parameterized by the remaining variables. The second
level decision maker optimizes his objective function under the given parameters from the first
level decision maker. This one, in return, with complete information on the possible reactions
of the second level decision maker, selects the parameters so as to optimize his own objective
function.

Bilevel problems can be formulated as:

min
(x1,x2)∈S

f1(x1, x2)

where x2 ∈ arg min
ν∈S(x1)

f2(x1, ν)
(1)

where x1 ∈ Rn1 and x2 ∈ Rn2 are the variables controlled by the first level and the second level
decision maker, respectively; f1, f2 : Rn −→ R, n = n1 + n2; S ⊂ Rn defines the common
constraint region and S(x1) = {x2 ∈ Rn2 : (x1, x2) ∈ S}.



286 Herminia I. Calvete and Carmen Galé

Let S1 be the projection of S onto Rn1 . For each x1 ∈ S1, the second level decision maker
solves the problem (2)

min f2(x1, x2)

s.t.
x2 ∈ S(x1)

(2)

The feasible region of the first level decision maker, called inducible region IR, is implicitly
defined by the second level optimization problem

IR = {(x1, x
∗
2) : x1 ∈ S1, x∗

2 ∈ M(x1)}

where M(x1) denotes the set of optimal solutions to (2). We assume that S is not empty and
that for all decisions taken by the first level decision maker, the second level decision maker
has some room to respond, i.e. M(x1) �= ∅.

The bilevel programming problem (1) is a nonconvex optimization problem that has re-
ceived increasing attention in the literature (see [2, 10, 11, 14, 17] and references therein). One
of its main features is that, unlike general mathematical problems, the bilevel problem may
not possess a solution even when f1 and f2 are continuous and S is compact. In particular,
difficulties may arise when M(x1) is not single-valued for all permissible x1. Different ap-
proaches have been proposed in the literature to make sure that the bilevel problem is well
posed. The most common one is to assume that, for each value of the first level variables x1,
there is a unique solution to the second level problem, that is, the set M(x1) is a singleton for
all x1 ∈ S1 [2, 3, 4, 10, 17].

In this paper the linear fractional/quadratic bilevel programming (LFQBP) problem is con-
sidered in which the first level objective function is linear fractional, the second level objective
function is quadratic and the common constraint region S is a polyhedron.

Fractional programming and quadratic programming when there exists only one level of
decision have received remarkable attention in the literature [1, 12, 16]. It is worth mentioning
that objective functions which are ratios frequently appear, for instance, when an efficiency
measure of a system is to be optimized or when approaching a stochastic programming prob-
lem. On the other hand, quadratic problems arise directly in such applications as least-squares
regression with bounds or linear constraints, robust data fitting, or portfolio optimization. They
also arise as subproblems in optimization algorithms for nonlinear programming and in stochas-
tic optimization. Fractional bilevel problems have been considered in [5, 6, 7, 8, 9]. Quadratic
bilevel problems have been addressed in [13, 15, 18, 19, 20].

In this paper, following the approach taken in [9, 20], we use Karush-Kuhn-Tucker opti-
mality conditions to rewrite the bilevel problem as a single level problem and derive optimality
conditions for the LFQBP problem by applying duality theory. These results extend optimal-
ity conditions developed in [20] for the linear/quadratic bilevel programming problem. The
paper is organized as follows. In Section 2 the LFQBP problem is formulated and some pre-
liminary properties are obtained. Section 3 provides the main theoretical results on optimality
conditions. Finally, Section 4 concludes the paper with final conclusions and future work.



Optimality conditions for the LFQBP problem 287

§2. Problem formulation

Using the common notation in bilevel programming, the LFQBP problem can be written as
follows:

min
c11x1 + c12x2 + α

d11x1 + d12x2 + β
, where x2 solves

min c21x1 + c22x2 + (x1, x2)
tQ(x1, x2)

s.t.
A1x1 + A2x2 ≤ b

where c11, c21 and d11 are n1-vectors; c12, c22 and d12 are n2-vectors; α and β are scalars; A1 is
an m× n1 matrix; A2 is an m× n2 matrix; b is an m-vector and Q is an (n1 + n2)× (n1 + n2)
symmetric matrix with

Q =

(
Q3 Qt

2

Q2 Q1

)
where Q1, Q2 and Q3 are matrices of conformal dimensions.

We assume that the polyhedron S = {(x1, x2) : A1x1 + A2x2 ≤ b} is non-empty and
bounded. In addition, it is also assumed that d11x1 + d12x2 + β > 0, ∀(x1, x2) ∈ S. If this is
not so, it suffices to consider the linear fractional objective function as−(c11x1 +c12x2 +α)/−
(d11x1 + d12x2 + β).

For each value of x1 ∈ S1, the second level decision maker solves the following quadratic
programming problem:

min c21x1 + c22x2 + (x1, x2)
tQ(x1, x2)

s.t.
A2x2 ≤ b− A1x1

Bearing in mind that c21x1 + xt
1Q3x1 is a constant term, this problem is equivalent to:

(Px1) : min (c22 + 2xt
1Q

t
2)x2 + xt

2Q1x2

s.t.
A2x2 ≤ b− A1x1

(3)

We assume that Q1 is positively definite so as there will be a unique optimal solution to
the second level problem. That is to say, M(x1) is a singleton for all x1 ∈ S1 and the LFQBP
problem is well posed.

As a consequence, the LFQBP problem is equivalent to the following bilevel problem,
which will be considered in the sequel:

min
c11x1 + c12x2 + α

d11x1 + d12x2 + β
, where x2 solves

min (c22 + 2xt
1Q

t
2)x2 + xt

2Q1x2

s.t.
A1x1 + A2x2 ≤ b

(4)
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Remark 1. Notice that, for any fixed (x1, x2) ∈ IR, x2 is an optimal solution to (Px1). Hence,
by applying Karush-Kuhn-Tucker necessary and sufficient conditions, there exists w ∈ Rm

such that (x1, x2, w) satisfies

A1x1 + A2x2 ≤ b (5)

wt(A1x1 + A2x2 − b) = 0 (6)

2Q2x1 + 2Q1x2 + At
2w = −ct

22 (7)

w ≥ 0 (8)

Similarly, if (x1, x2, w) satisfies (5)-(8) then (x1, x2) ∈ IR.

§3. Optimality conditions for the LFQBP problem

Theorem 1. (x∗
1, x

∗
2) is an optimal solution to the LFQBP problem if and only if there exists

w∗ ∈ Rm such that (x∗
1, x

∗
2, w

∗) is an optimal solution to the following one level nonlinear
programming problem

(NLP ) : min
(x1,x2,w)

F (x1, x2) =
c11x1 + c12x2 + α

d11x1 + d12x2 + β

s.t. (5)− (8).

Proof. Let (x∗
1, x

∗
2) an optimal solution to the LFQBP problem. Taking into account remark 1,

since (x∗
1, x

∗
2) ∈ IR, there exists w∗ ∈ Rm such that (x∗

1, x
∗
2, w

∗) satisfies (5)-(8), that is to say
it is a feasible solution to the problem (NLP ).

If (x∗
1, x

∗
2, w

∗) was not an optimal solution to (NLP ), there would exist (x̂1, x̂2, ŵ) satisfy-
ing (5)-(8), thus (x̂1, x̂2) ∈ IR, such that

c11x̂1 + c12x̂2 + α

d11x̂1 + d12x̂2 + β
<

c11x
∗
1 + c12x

∗
2 + α

d11x∗
1 + d12x∗

2 + β

This, together with the fact that (x̂1, x̂2) ∈ IR, contradicts the optimality of (x∗
1, x

∗
2). There-

fore, (x∗
1, x

∗
2, w

∗) solves the problem (NLP ).
Conversely, let (x∗

1, x
∗
2, w

∗) be an optimal solution to the problem (NLP ). Since (x∗
1, x

∗
2, w

∗)
satisfies conditions (5)-(8), we conclude that (x∗

1, x
∗
2) ∈ IR. On the other hand, for any fixed

(x1, x2) ∈ IR, there exists w ∈ Rm such that (x1, x2, w) is a feasible solution to the prob-
lem (NLP ). Moreover, since (x∗

1, x
∗
2, w

∗) is an optimal solution to the problem (NLP ) then
F (x∗

1, x
∗
2) ≤ F (x1, x2). Therefore, (x∗

1, x
∗
2) solves the LFQBP problem.

The problem (NLP ) can be reformulated as

min
w≥0

min
(x1,x2)∈S[w]

F (x1, x2) (9)

where S[w] = {(x1, x2) ∈ Rn1+n2 : (x1, x2) satisfies (5)− (7)}. By convention, when S[w] =
∅, we define min{F (x1, x2) : (x1, x2) ∈ S[w]} = ∞.
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For a given w ≥ 0, since wt(A1x1 + A2x2− b) ≤ 0, the inner problem in (9) can be written
as:
(Pw) : min

(x1,x2)
F (x1, x2) =

c11x1 + c12x2 + α

d11x1 + d12x2 + β

s.t.
A1x1 + A2x2 ≤ b

wtA1x1 + wtA2x2 ≥ wtb

2Q2x1 + 2Q1x2 = −ct
22 − At

2w

Since w is fixed, this is a linear fractional programming problem whose dual problem is:

(Dw) : max
(u1,u2,u3,u4)

G(u1, u2, u3, u4) = u4

s.t.

(u2w − u1)
tA1 + 2ut

3Q2 + u4d11 = c11 (10)

(u2w − u1)
tA2 + 2ut

3Q1 + u4d12 = c12 (11)

−(u2w − u1)
tb + ut

3(c
t
22 + At

2w) + u4β = α (12)

u1 ≥ 0, u2 ≥ 0 (13)

where u1 ∈ Rm, u2 ∈ R, u3 ∈ Rn2 and u4 ∈ R.
For a given w ≥ 0, let

S{w} = {(u1, u2, u3, u4) ∈ Rm+n2+2 : (u1, u2, u3, u4) satisfies (10)− (13)}.

By convention, if S{w} = ∅ we define max{G(u1, u2, u3, u4) : (u1, u2, u3, u4) ∈ S{w}} =
∞.

Let (DP ) be the following min-max problem:

min
w≥0

max
(u1,u2,u3,u4)∈S{w}

G(u1, u2, u3, u4) (14)

Theorem 2. If (x̂1, x̂2, ŵ) and (û1, û2, û3, û4, ŵ) are feasible solutions to the problems (NLP )
and (DP ), respectively, then

û4 ≤ c11x̂1 + c12x̂2 + α

d11x̂1 + d12x̂2 + β

Proof. Since (û1, û2, û3, û4) ∈ S{ŵ}, û1, û2, û3, û4 and ŵ satisfy the corresponding constraints
(10)-(13). Post-multiplying (10) by x̂1, (11) by x̂2 and then adding them together with (12), we
get

(û2ŵ − û1)
t(A1x̂1 + A2x̂2 − b) + ût

3(2Q2x̂1 + 2Q1x̂2 + ct
22 + At

2ŵ)

+û4(d11x̂1 + d12x̂2 + β) = c11x̂1 + c12x̂2 + α

Since (x̂1, x̂2) ∈ S[ŵ], taking into account the corresponding constraints (6) and (7), the
above equality can be rewritten as

−ût
1(A1x̂1 + A2x̂2 − b) + û4(d11x̂1 + d12x̂2 + β) = c11x̂1 + c12x̂2 + α
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Since d11x̂1 + d12x̂2 + β > 0, û1 ≥ 0 and A1x̂1 + A2x̂2 − b ≤ 0, it is derived that

û4 ≤ c11x̂1 + c12x̂2 + α

d11x̂1 + d12x̂2 + β

and the proof is completed.

Remark 2. Notice that for a given w ≥ 0, if S[w] �= ∅ then the problem (Pw) is a linear
fractional programming problem on a nonempty and bounded polyhedron, so it reaches an
optimal solution and so its dual problem (Dw). Bearing in mind primal-dual relationships,
their optimal objective values are equal, i.e.,

min
(x1,x2)∈S[w]

F (x1, x2) = max
(u1,u2,u3,u4)∈S{w}

G(u1, u2, u3, u4)

Moreover, if S[w] = ∅, by convention

min
(x1,x2)∈S[w]

F (x1, x2) = max
(u1,u2,u3,u4)∈S{w}

G(u1, u2, u3, u4) = ∞

Hence,

min
w≥0

min
(x1,x2)∈S[w]

F (x1, x2) = min
w≥0

max
(u1,u2,u3,u4)∈S{w}

G(u1, u2, u3, u4) (15)

In other words, the optimal objective values of the problems (NLP ) and (DP ) are equal.

Theorem 3. Let (x∗
1, x

∗
2, w

∗) and (u∗
1, u

∗
2, u

∗
3, u

∗
4, w

∗) be feasible solutions to the problems
(NLP ) and (DP ), respectively. Then they are respectively optimal if and only if

c11x
∗
1 + c12x

∗
2 + α

d11x∗
1 + d12x∗

2 + β
= u∗

4 (16)

and, for all (x1, x2) ∈ IR,

(u∗
2w

∗ − u∗
1)

t(A1x1 + A2x2 − b) + u∗t
3 (2Q2x1 + 2Q1x2 + ct

22 + At
2w

∗) ≥ 0 (17)

Proof. If (x∗
1, x

∗
2, w

∗) and (u∗
1, u

∗
2, u

∗
3, u

∗
4, w

∗) are optimal solutions to the problems (NLP ) and
(DP ), respectively, then (16) holds as a consequence of remark 2.

On the other hand, let (x1, x2) ∈ IR. Bearing in mind remark 1, there exists w ∈ Rm such
that (x1, x2, w) is a feasible solution to the problem (NLP ).

Since (u∗
1, u

∗
2, u

∗
3, u

∗
4, w

∗) is a feasible solution to the problem (DP ), post-multiplying the
corresponding constraints (10) by x1, (11) by x2 and then adding them together with (12) we
get

(u∗
2w

∗ − u∗
1)

t(A1x1 + A2x2 − b) + u∗t
3 (2Q2x1 + 2Q1x2 + ct

22 + At
2w

∗)

+u∗
4(d11x1 + d12x2 + β) = c11x1 + c12x2 + α

Taking into account that d11x1 + d12x2 + β �= 0 and the fact that (x∗
1, x

∗
2, w

∗) is an optimal
solution to the problem (NLP ), we can write

u∗
4 +

1
d11x1 + d12x2 + β

{
(u∗

2w
∗ − u∗

1)
t(A1x1 + A2x2 − b) + u∗t

3 (2Q2x1 + 2Q1x2 + ct
22 + At

2w
∗)
}

=
c11x1 + c12x2 + α

d11x1 + d12x2 + β
≥ c11x

∗
1 + c12x

∗
2 + α

d11x∗
1 + d12x∗

2 + β
= u∗

4
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Since d11x1 + d12x2 + β > 0, we conclude that

(u∗
2w

∗ − u∗
1)

t(A1x1 + A2x2 − b) + u∗t
3 (2Q2x1 + 2Q1x2 + ct

22 + At
2w

∗) ≥ 0

which proves (17).
Conversely, let (x1, x2, w) be a feasible solution to the problem (NLP ). As a consequence

of remark 1, (x1, x2) ∈ IR. Since (u∗
1, u

∗
2, u

∗
3, u

∗
4, w

∗) is a feasible solution to the problem
(DP ), in the same way as we have done previously, post-multiplying the corresponding con-
straints (10) by x1, (11) by x2 and then adding them together with (12) we get

c11x1 + c12x2 + α

d11x1 + d12x2 + β
= u∗

4+

1

d11x1 + d12x2 + β

{
(u∗

2w
∗ − u∗

1)
t(A1x1 + A2x2 − b) + u∗t

3 (2Q2x1 + 2Q1x2 + ct
22 + At

2w
∗)
}

By applying conditions (16) and (17) and bearing in mind that d11x1 + d12x2 + β > 0, we
get

c11x1 + c12x2 + α

d11x1 + d12x2 + β
≥ c11x

∗
1 + c12x

∗
2 + α

d11x∗
1 + d12x∗

2 + β

and so we conclude that (x∗
1, x

∗
2, w

∗) is an optimal solution to the problem (NLP ).
Finally, since (x∗

1, x
∗
2, w

∗) solves the problem (NLP ), taking into account remark 2,
from (16) directly follows that (u∗

1, u
∗
2, u

∗
3, u

∗
4, w

∗) is an optimal solution to the problem (DP ).

Theorem 4. (x∗
1, x

∗
2) ∈ S is an optimal solution to the LFQBP problem if and only if there exist

w∗ ∈ Rm, u∗
1 ∈ Rm, u∗

2 ∈ R, u∗
3 ∈ Rn2 and u∗

4 ∈ R satisfying w∗ ≥ 0, u∗
1 ≥ 0, u∗

2 ≥ 0, such
that

w∗t(A1x
∗
1 + A2x

∗
2 − b) = 0 (18)

2Q2x
∗
1 + 2Q1x

∗
2 + At

2w
∗ = −ct

22 (19)

(u∗
2w

∗ − u∗
1)

tA1 + 2u∗t
3 Q2 + u∗

4d11 = c11 (20)

(u∗
2w

∗ − u∗
1)

tA2 + 2u∗t
3 Q1 + u∗

4d12 = c12 (21)

−(u∗
2w

∗ − u∗
1)

tb + u∗t
3 (ct

22 + At
2w

∗) + u∗
4β = α (22)

u∗t
1 (A1x

∗
1 + A2x

∗
2 − b) = 0 (23)

∀(x1, x2) ∈ IR

(u∗
2w

∗ − u∗
1)

t(A1x1 + A2x2 − b) + u∗t
3 (2Q2x1 + 2Q1x2 + ct

22 + At
2w

∗) ≥ 0 (24)

Proof. If (x∗
1, x

∗
2) is an optimal solution to the LFQBP problem, by Theorem 1, there exists

w∗ ∈ Rm, w∗ ≥ 0, such that (x∗
1, x

∗
2, w

∗) is an optimal solution to the problem (NLP ). Hence,
it is clear that (18) and (19) are satisfied.

Since (x∗
1, x

∗
2) is an optimal solution to (Pw∗), then there exist u∗

1 ∈ Rm, u∗
2 ∈ R, u∗

3 ∈ Rn2

and u∗
4 ∈ R such that u∗

1 ≥ 0, u∗
2 ≥ 0 and (u∗

1, u
∗
2, u

∗
3, u

∗
4) is an optimal solution to (Dw∗).
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Hence, it is clear that (20), (21) and (22) are satisfied. In addition, their optimal objective
values are equal, i.e.,

c11x
∗
1 + c12x

∗
2 + α

d11x∗
1 + d12x∗

2 + β
= u∗

4 (25)

Moreover, post-multiplying (20) by x∗
1, (21) by x∗

2 and then adding them together with (22),
while applying (18) and (19), we get

−u∗t
1 (A1x

∗
1 + A2x

∗
2 − b) + u∗

4(d11x
∗
1 + d12x

∗
2 + β) = c11x

∗
1 + c12x

∗
2 + α

Taking into account (25), we conclude that u∗t
1 (A1x

∗
1 + A2x

∗
2 − b) = 0, which proves (23).

Finally, since (u∗
1, u

∗
2, u

∗
3, u

∗
4, w

∗) is a feasible solution to the problem (DP ) which satis-
fies (25) and (x∗

1, x
∗
2, w

∗) is an optimal solution to the problem (NLP ), by applying remark 2
we conclude that (u∗

1, u
∗
2, u

∗
3, u

∗
4, w

∗) is an optimal solution to the problem (DP ). As a result of
Theorem 3, (24) is satisfied.

Conversely, let (x∗
1, x

∗
2) ∈ S. As a consequence of (18) and (19), (x∗

1, x
∗
2, w

∗) is a feasible
solution to the problem (NLP ). Similarly, since (20), (21) and (22) hold (u∗

1, u
∗
2, u

∗
3, u

∗
4, w

∗) is
a feasible solution to the problem (DP ).

Moreover, post-multiplying (20) by x∗
1, (21) by x∗

2 and then adding them together with (22),
while applying (18), (19) and (23), we get

u∗
4(d11x

∗
1 + d12x

∗
2 + β) = c11x

∗
1 + c12x

∗
2 + α

From this condition and (24), as a consequence of Theorem 3, we conclude that (x∗
1, x

∗
2, w

∗)
and
(u∗

1, u
∗
2, u

∗
3, u

∗
4, w

∗) are optimal solutions to the (NLP ) and (DP ) problems, respectively .
Hence, from Theorem 1 we get that (x∗

1, x
∗
2) is an optimal solution to the LFQBP problem.

§4. Conclusions

We have introduced necessary and sufficient optimality conditions for a particular class of
bilevel programming problems. The main concepts involved were Karush-Kuhn-Tucker condi-
tions and duality relationships.

Our future work includes the use of these conditions to develop an algorithm which solves
the LFQBP problem by solving only linear fractional programming problems.
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