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ON A NEW CONSERVATION LAW

RESULTING FROM SEDIMENTARY BASIN

DYNAMICS

Guy Vallet

Abstract. In this paper, we are interested in the theoretical analysis of a geological strati-
graphic model, taking into account a limited weathering condition. Firstly, we present the
physical model and the mathematical formulation, which lead to an original conservation
law. Then, the definition of a solution and some mathematical tools in order to resolve the
problem are given. At last, we treat the 1−D case and we present some open problems.

Keywords: stratigraphic models, weather limited, degenerated parabolic - hyperbolic con-
servation laws.
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§1. Introduction and modelling presentation

In this paper, we are interested in the mathematical study of a new stratigraphic model, recently
developed by the Institut Français du Pétrole (IFP). The model concerns geologic basin forma-
tion by the way of sedimentation with a weather limited condition. It leads to mathematical
questions which are difficult to answer in the framework of ill-posed and inverse problems.

By taking into account large scale in time and space and by knowing a priori, the tectonique,
the eustatism and the sediments flux at the basin boundary, the model has to state about the
transport of sediments. One may find in D. Greanjeon and al. [9] and R. Eymard and al. [7]
the physical and the numerical modelling of the multi-lithological case. An approach of the
mathematical analysis of the mono-lithological case can be found in S.N. Antontsev and al. [1]
and G. Gagneux and al. [3].

Let us consider in the sequel a sedimentary basin (see Figure 1), denoted by Ξ, with base
Ω ⊂ RN (N = 1, 2) determined by a known vertical position, given by H(t, x) at each time t
and position x. For any positive T , one notes Q =]0, T [×Ω.

In the sequel, one denotes by u the sediments height, the topography is given by u + H and
one is led to consider a gravitational model where:
i) the sediments flux −→q is assumed to be proportional to K∇h(u + H) where K is a viscosity
rate and
ii) the erosion speed ∂tu is underestimated by −E where E is a given non negative bounded
measurable function in Q (a weathering limited process): i.e. ∂tu + E ≥ 0.
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Figure 1:

The original aspect of the model is this weather limited condition on the erosion rate.

Therefore, in order to respect this constraint in a conservative formulation, one has to correct
the diffusive flux −K∇h(H + u) by the introduction of a multiplier λ.

Thus, the real flux is given by −λK∇h(H + u), where λ is an unknown function with
values a priori in [0, 1].

In the realistic physical problem, Γ = ∂Ω = Γe ∪ Γs and one has:
−λ∂nh(H + u) = f on the inflow boundary and
some unilateral constraints on the outflow boundary: ∂nh(H + u) + f ≥ 0, ∂tu + E ≥ 0
and (∂nh(H + u) + f)(∂tu + E) = 0 where f is a given bounded measurable function on
Σ =]0, T [×Ω.

Therefore, the mathematical modelling is:
The mass balance of the sediment:

∂tu− div(λ∇h(H + u)) = 0 in Q (1)

The boundary conditions on ∂Ω = Γe ∪ Γs:

−λ∂nh(H + u) = f on ]0, T [×Γe,(2)

∂tu + E ≥ 0,
λ∂nh(H + u) + f ≥ 0

and (λ∂nh(H + u) + f)(∂tu + E) = 0 on ]0, T [×Γs.(3)

The weather limited conditions:
∂tu ≥ −E in Q. (4)

And the initial condition:
u(0, .) = u0 in Ω. (5)

In order to simplify, one considers in the sequel:
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i) homogeneous Dirichlet conditions on the boundary (The previous authors consider such
boundary conditions of unilateral type on Ω. The mathematical analysis is inspired by the
chapter 2 of G. Duvaut and J.L. Lions [6] and by the ”new problems” of J.-L Lions in [8]
dealing of thermic).
and

ii) H = 0, K = Id and h = Id.

Therefore, the problem becomes : Look for u a priori in H1(Q) ∩ L2(0, T ; H1
0 (Ω)), such

that,
∂tu + E ≥ 0 in Q, u(0, x) = u0 in Ω

with u0 in H1
0 (Ω) ∩ L∞(Ω) and

∂tu(t, x)−Div {λ(t, x)∇u(t, x)} = 0 in Q. (6)

Remark 1.
If E = 0, since ∂tu ≥ 0, one has, for a.e. t, λ∇u+ = 0 a.e. in Ω.

i) Then, if for example u0 ≥ 0 in a non empty open subset ω of Ω, λ∇u = 0 a.e. in ω.
Therefore, ∂tu = 0 a.e. in ω and u(t, .) = u0 a.e.in ω.
Thus, if ∇u0 �= 0 in ω, the problem must degenerate.

ii) If one assumes that ∇u0 = 0 in ω, any λ is solution and one needs more information about
the modelling of λ.

Th. Gallouët and R. Masson in [7] propose to consider the following global constraint

∂tu + E ≥ 0, 1− λ ≥ 0 and (∂tu + E)(1− λ) = 0 in Q. (7)

Note that for the uniqueness of the solution, this constraint may be insufficient. One can
see in the above example that there are many possible solutions. In fact, maximal values of λ
in [0, 1] have to be consider in order to select λ = 1{∇u0=0}.

Then S.N. Antontsev, G. Gagneux and G. Vallet propose in [2] a conservative formulation
containing (7).

If one denotes by H the maximal monotone graph of the Heaviside function (i.e. H(x) = 0
if x < 0, H(x) = 1 if x > 0 and H(0) = [0, 1]) then (λ, h) is formally a solution of :

0 = ∂tu− div(λ∇u) where λ ∈ H(∂tu + E) in Q. (8)

Where from our interest for the study of equations (resp. differential inclusions) of the type

0 = ∂tu− div(a(∂tu + E)∇u) resp. 0 ∈ ∂tu− div(H(∂tu + E)∇u).

In our knowledge, there are no mathematical studies of such equations, while S.N. Antont-
sev points out in [2] the presence of conservation laws of the shape

0 = ∂tu− div(a(u, ∂tu)∇u)

in fluid mechanics: see [10] and [11].
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§2. Définition of a solution and existence

Definition 1. A solution to (8) is a couple (λ, u) of L∞(Q)× [H1(Q)∩L2(0, T ; H1
0 (Ω))] such

that:
λ ∈ H(∂tu + E), u(t = 0) = u0,

∀v ∈ H1
0 (Ω),

∫
Ω

∂tuv + λ∇u∇v dx = 0

and λ is maximal in the sense: if (µ, w) is another solution then µ ≤ λ.

In order to prove the existence of such a solution, one proposes a method of time - dis-
cretization, with a technique of artificial viscosity. Finally, one supposes that E is a regular
function of time variable.

Thus, considering two real positive parameters ε and h, one notes Ek = E(kh), for any real
x,

Hε(x) = max[ε, min(
x

ε
+ ε, 1)] and F k

ε (x) =

∫ x

0

1

Hε(t + Ek)
dt.

Proposition 1. There exists a unique sequence (uk
ε)k in H1

0 (Ω) such that u0
ε = u0 with ∀v ∈

H1
0 (Ω), ∫

Ω

uk
ε − uk−1

ε

h
v + Hε(

uk
ε − uk−1

ε

h
+ Ek)∇uk

ε .∇v dx = 0.

Moreover, inf ess
Ω

u0 ≤ uk
ε ≤sup ess

Ω
u0.

The proof comes from Schauder-Tykonov fixed point theorem and the maximum principle.

Lemma 2. Independently of ε and h, sequence (uk
ε)k is bounded in L∞(Ω) and for any integer

n,
2

h

n∑
k=1

||uk
ε − uk−1

ε ||2L2(Ω) + ||un
ε ||2H1

0 (Ω) +
n∑

k=1

||uk
ε − uk−1

ε ||2H1
0 (Ω) ≤ ||u0||2H1

0 (Ω).

One has just to use the test-function v = F k
ε (

uk
ε − uk−1

ε

h
).

First of all, one has to pass to the limit over ε to 0:

Proposition 3. There exists a sequence (λk, u
k)k in L∞(Ω)×H1

0 (Ω) such that

λk ∈ H(
uk − uk−1

h
+ Ek), u0 = u0 and ∀v ∈ H1

0 (Ω),∫
Ω

uk − uk−1

h
v + λk∇uk.∇v dx = 0. (9)

Moreover, inf ess
Ω

u0 ≤ uk ≤sup ess
Ω

u0 and uk ≥ uk−1 − hEk a.e. in Ω.

Let us note: ûh(t, x) =
∑N

k=0[
uk − uk−1

h
(t − kh) + uk−1]1[kh,(k+1)h] where u−1 = u0 and

h = T
N

.
So, one gets
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Proposition 4. The sequence (ûh) is bounded in H1(Q) ∩ L∞(Q) ∩ L∞(0, T ; H1
0 (Ω)). Thus,

it is relatively compact in C([0, T ], L2(Ω)).
Moreover,

λh =
N∑

k=0

λkI[kh,(k+1)h[ ∈ H(∂tûh+
N∑

k=0

EkI[kh,(k+1)h[), ∂tûh+
N∑

k=0

EkI[kh,(k+1)h[ ≥ 0 a.e .in Q

and for any v in L2(0, T, H1
0 (Ω)), one has:∫

Q

∂tûhv + λh∇ûh.∇v dxdt = o(h). (10)

On the one hand, each accumulation point is a ”mild solution” in the sense of Ph. Bénilan
and al. [4] ; on the other hand, the double weak convergence does not allow us to pass to the
limit in the term

∫
Q

λh∇ûh.∇v dxdt.

In the forthcoming paragraph, one proposes cases where such a convergence can be proven.

First, observe some obvious cases:
i) if u0 ≥ 0 in Ω then the solution is (1{∇u0=0}, u0).
ii) if u0 is non positive with ∆u0 ≥ 0, the solution is (1, w) where w is the solution of the heat
equation.

§3. The 1-D case

In this section, Ω =]− 1, 1[ and one assumes that E = 0.

Let us start with this essential remark for the sequel:

Remark 2. Since sequence (uk)k is non decreasing, function x �→ (λ1uk′)(x) is continuous and
non decreasing in [−1, 1].

This allows us to treat the following examples.

3.1. Between two hills

If u0 ≥ 0 in ]a, b[∪]c, d[ for given −1 ≤ a < b ≤ c < d ≤ 1, then λ1u1′ = 0 and u1 = u0 in
]a, d[.

By induction, the looking for solution for problem (8) is (1{∇u0=0}, u0) in ]a, d[.

In particular, if u0 ≥ 0 in ] − 1,−1 + ε[∪]1 − ε, 1[ for a given positive ε, the looking for
solution for problem (8) is (1{∇u0=0}, u0) in Ω.

3.2. A convex sea against a hill

Assume now that u0 ≥ 0 in ]− 1, 0], u0 ≤ 0 and convex in [0, 1[.
Then u0 is decreasing in [0, α], constant in [α, β] (if needed, otherwise α = β) and increas-

ing in [β, 1].
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According to what precedes, u1 = u0 in [−1, 0], and since u0 ≤ 0 in ]0, 1[, thanks to the
maximum principle, one has u1 ≤ 0 in ]0, 1[.

Let us note x(h) = sup{x ∈ [−1, 1], λ1u1′(x) = 0}.
In order to have a non trivial solution, one is looking for x(h) < 1.

Thanks to the above proposition, for any x > x(h), one has λ1u1′(x) > 0. In particular, u1

is an increasing function in ]x(h), 1[. Since u1(0) ≥ 0, one notices that inevitably x(h) > 0,
otherwise, one would have a contradiction with u1(1) = 0.

One is so returned to look for x(h) > 0, u1 ∈ H1(x(h), 1) and λ1 ∈ H(
u1 − u0

h
) with

λ1 > 0, such that

u1 − h(λ1u1′)′ = u0 in ]x(h), 1[,

with

u1(x(h)) = u0(x(h)), u1′(x(h)) = 0 and u1(1) = 0.

As one speculates to have a maximal value of λ1, one assumes that λ1 = 1 in ]x(h), 1[ and then,
u1 is given by:

u1(x) = u0(x)−
∫ x

x(h)

u′
0(y)ch(

y − x√
h

) dy

where the unique point x(h) is defined by:∫ 1

x(h)

u′
0(y)ch(

y − 1√
h

) dy = 0.

Moreover, one obviously notes that x(h) ∈]0, α[ and that u1 ≥ u0.

Assume now that there exist a solution (µ, v) such that µ �= 0 in ]0, x(h)].

As u′
0 < 0 in ]0, x(h)], inevitably v �= u0 in ]0, x(h)] . Thus, there exists a in ]0, x(h)[ and

ε > 0 such that v > u0 in ]a, a + ε[. Therefore, µ = 1 in ]a, a + ε[ , µv′ > 0 in ]a, 1[ and v is
an increasing function in ]a, 1[ . As u0 is non increasing in ]0, α[, µ = 1 in ]a, α[.

Remark that v > u in ]a, x(h)[ and denote by b = inf{x ∈]a, 1], v(x) = u(x)}
(Remind that v(1) = u(1) = 0).

Since v ≥ u > u0 in ]x(h), b[, one has µ = 1 and u− v is a solution to:

u− v − h(u− v)” = 0 in ]x(h), b[

with

(u− v)(b) = 0, (u− v)(x(h)) = u0(x(h))− v(x(h)) < 0

and

(u− v)′(x(h)) = −v′(x(h)) < 0.

Thus, u− v is concave on [x(h), b] with (u− v)′(x(h)) < 0 and (u− v)(x(h)) < 0.

Therefore, (u−v)(b) < 0 and one has a contradiction. So, λ1 = 1]x(h),1[ is the only maximal
solution.

That allows us to build explicitly iteration u1 and one is able to remark that u1 is non positive
and convex over ]0, 1[ ; decreasing on ]0, x(h)[ and increasing on ]x(h), 1[.
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Moreover, as u0 is a convex function, one has u1 ≥ u0 and this constructed solution is the

maximal solution with respect to any possible value of λ1 in H(
u1 − u0

h
).

So, it is possible to pursue the construction of uk and λk by induction, in the following way
: there exists a non increasing sequence xk(h) in [0, α] such that

λk = 1]xk(h),1[ and uk = u01]−1,xk(h)] + wk1]xk(h),1[

where wk is the solution to :

wk − hwk” = u0 in ]xk(h), 1[

with

wk(xk(h)) = u0(x
k(h)), wk′(xk(h)) = 0 and wk(1) = 0.

So, according to the notation of Property 4, (λh)h is a bounded sequence in BV (Q)∩L∞(Q)
and in particular var(λh) ≤ T + 1.

It is therefore possible to extract from (λh) a sub-sequence that converges a.e. in Q and in
any Lp(Q) (for any finite p) towards λ with 0 ≤ λ ≤ 1 a.e. in Q.

Furthermore, by a monotone argument, one has (λ− 1)∂tu= 0 a.e. in Q.

Then, one has : λ ∈ H(∂tu) and as the limit in (10) is then possible, one constructs a
solution to problem (8), with the supplementary information, appropriate for the 1 - D case:
Thanks to Ascoli’s theorem, u ∈ C0(Q).

Let us note the that a.e. convergence with values of (λh)h in {0, 1} implies that λ(t, x) ∈
{0, 1} and that a.e. λ = 1ω where ω ⊂ Q is a finite perimeter set.

Moreover, one proves that the free boundary ∂ω ∩ Q is the graph of a continuous, non
increasing function t �→ ξ(t).

3.3. A convexo-concave sea against a hill

Let us have a look now to the case: u0 ≥ 0 in ]− 1, 0], u0 ≤ 0 in [0, 1], convex in [0, β[ with u0

decreasing in [0, α], non decreasing in [α, β], increasing and concave in [β, 1].

Due to the ideas developed above, one proposes the following algorithm to build (λ1, u1).

Consider x1(h) in ]α, 1[ and denote by x0(h) the unique point in ]0, α[ such that∫ 1

x0(h)

u′
0(y)ch(

y − x1(h)√
h

) dy = 0.

Therefore, u1(x) = u0(x)−
∫ x

x(h)
u′

0(y)ch(y−x√
h

) dy is the unique solution to

u1 − hu1” = u0 in ]x0(h), x1(h)[,

with

u1(x0(h)) = u0(x0(h)), u1′(x0(h)) = 0, u1(x1(h)) = u0(x1(h)),

and

u1 = u0 in ]− 1, 1[\]x0(h), x1(h)[.
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At first, assume that x1(h) is in ]α, β[ such that u1 ≥ u0. Note that since u0 is not convex
on ]β, 1[, x1(h) = 1 is not obvious.

Remark that λ1 = 0 in ]− 1, x0(h)[, λ1 = 1 in ]x0(h), x1(h)[ and h(λ1u1′)′ = u1 − u0 = 0
in ]x1(h), 1[.

As, λ1u1′ is a non decreasing continuous function, for any x ≥ x1(h), one has :

u1′(x1(h)−) = (λ1u1′)(x1(h)−) = (λ1u1′)(x1(h)+) = λ1(x)u′
0(x) ≤ u′

0(x).

As u0 is concave in ]β, 1[, λ1(x)u′
0(x) ≤ u′

0(1) and it remains only to consider λ1(x) =
u′
0(1)

u′
0(x)

in order to construct a solution (λ1, u1).

Note that, if u′
0(1) = 0, then λ1 = 0 in ]x1(h), 1[. Thus, x0(h) = x1(h) and u1 ≡ u0.

At last, one only has to choose x1(h) as close as possible to 1 within the above constraints.

§4. Conclusion and open problems

One presents here a new conservation law of which general study remains still opened. In
particular, the way to understand the forming of the hyperbolic zone and the parabolic one. As
an example in 1−D, the previous study shows that if the sign of u0 changes and if it remains
non negative locally around −1 and 1, then the zone where u0 is negative is outside influence.

For the autonomous problem, one succeeds however in presenting some results and illus-
trations in one space dimension for simple initial topography.

These illustrations seem to confirm the following guess: when L2 −mes{x ∈ Ω, u0(x) <
0} > 0, is there a set ω ⊂ Q such that u = u0 in Q\ω and u is the solution of the heat equation
in ω?
Is the free boundary ∂ω ∩Q characterized, if one notes ũ = u|ω, by a double condition of type
Dirichlet - Neuman on ∂ω ∩Q ?
One finds under a generalized shape Bernoulli’s problem as presented for example by A. Beurl-
ing in [5].

References

[1] S.N. Antontsev, G. Gagneux, G. Vallet, Analyse mathématique d’un modèle d’asservissement
stratigraphique. Approche gravitationnelle d’un processus de sédimentation sous une contrainte
d’érosion maximale, publication interne du Laboratoire de Mathématiques Appliquées n◦2001/23,
Pau, 2001.

[2] S.N. Antontsev, G. Gagneux, G. Vallet, On some stratigraphic control problems, Prikladnaya
Mekhanika Tekhnicheskaja Fisika (Novosibirsk) and Journal of Applied Mechanics and Technical
Physics (New York), à paraître.

[3] G. Gagneux , G. Vallet, Sur des problèmes d’asservissements stratigraphiques, Control, Optimisa-
tion and Calculus of Variations, 8 (2002) 715-739.

[4] Ph. Bénilan, M.G. Crandall, A. Pazy, Bonnes solutions d’un problème d’évolution semi-linéaire,
CRAS Paris 306(1) (1988) 527-530.



On a new conservation law resulting from sedimentary basin dynamics 255

[5] A. Beurling, On free-boundary problems for the Laplace equation, Sem. on analytic functions,
Ints. Adv. Stud. Princeton, 1 (1957) 248-263.

[6] G. Duvaut, J.L. Lions, Les inéquations en mécanique and en physique, Dunod, Paris, 1972.

[7] R. Eymard, T. Gallouët, D. Granjeon, R. Masson, Q.H. Tran, Multi-lithology stratigraphic model
under maximum erosion rate constraint, Int. J. of Num. Mandh. in Ingineering (to appear).

[8] J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris,
1969.

[9] D. Granjeon, Q. Huy Tran, R. Masson, R. Glowinski, Modèle stratigraphique multilithologique
souscontrainte de taux d’érosion maximum, Institut Français du Pétrole, 2000.

[10] Y. Mualem, G. Dagan, Dependent domain model of capillary hysteresis, Water Resour. Res., 11(3)
(1975) 452-460.

[11] A. Poulovassilis, E.C. Childs, The hysteresis of pore water: the non-independence of domains, Soil
Sci., 112(5) (1971) 301-312.

Guy VALLET
Laboratoire de Mathématiques Appliquées, FRE 2570
Université de Pau et des Pays de l’Adour
IPRA, BP1155, 64013 Pau Cedex, France
guy.vallet@univ-pau.fr


