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MULTIINDEXING POINTS FOR POISED

SUBPROBLEMS IN MULTIVARIATE

POLYNOMIAL INTERPOLATION

Thomas Sauer

Abstract. In this paper it is shown that any set of points that allows for unique interpolation
by the vector space of all polynomials of at most a certain total degree can be equipped with
multiindices in such a way that all the natural subproblems of lower degree are uniquely
solvable as well.
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§1. Introduction

The polynomial interpolation problem is easily stated in the following way:

Given distinct points x1, . . . , xN and an N–dimensional space P of polynomials
find, for given values y1, . . . , yN , a unique polynomial f ∈ P such that

f (xj) = yj, j = 1, . . . , N.

Clearly, the solvability or poisedness or correctness of the interpolation problem depends on
the relationship between the set X = {x1, . . . , xN} and the space P . In the univariate case
there is a canonical choice for P , namely the space ΠN−1 of all polynomials of degree≤ N−1
which is well–known to be poised for any choice of N distinct points. This is a classical issue,
covered in many textbooks on Numerical Analysis.

In d ≥ 2 variables, however, the situation is totally different. Here poisedness of the in-
terpolation problem for the space Πn of all polynomials of total degree ≤ n is an intricate
condition on the set X of interpolation points. This is not so much due to the requirement that
the cardinality of X must coincide with the dimension

(
n+d

d

)
of Πn, but stems from the fact that

poisedness relative to Πn is equivalent to the intricate condition that the points must not lie on a
nontrivial algebraic hypersurface of degree ≤ n, a condition that is hard to check and can only
be ensured by very special constructions. For more information on multivariate polynomial
interpolation and the history thereof, the reader is referred to the surveys [9, 10].
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In this paper, we focus on another property that is trivially satisfied by univariate polynomial
interpolation problems and that forms the basis for recursive schemes to compute the values
of interpolation polynomials at a given point by recursing to subproblems of lower degree.
Here we refer to the Aitken–Neville scheme introduced by Aitken [1] and modified a short
while later by Neville in [11], both with the intention of providing means for a simpler and
easier handling of tabulated values of functions. These schemes are based on repeated linear
interpolation/extrapolation and, though they are neither the most efficient way to compute
the value of the interpolation polynomial, cf. [7], nor a very stable way to so, they gained
popularity because the scheme is very simple to perform. The process of linear interpolation
can be interpreted as repeated affine or barycentric combinations of the intermediate data. This
geometric aspect has been generalized to several variables in [17], but it turned out that the
point configurations that permit such a recursive evaluation scheme must be of a very specific
structure.

On the other hand, these restrictive configurations, relying on multiindexed interpolation
points had a very appealing property: not only the full problem was poised but also all sub-
problems that arose from natural subsets of multiindices. The goal of this paper is to show that
and how any interpolation problem that is poised with respect to Πn can be rewritten in such a
way that all those natural subproblems are poised as well. This will be done by a closer look
at the process of putting points into blocks introduced in [16] as the basic building block for a
multivariate Newton approach and the derivation of error formulae for polynomial interpola-
tion.

We will revise this process after establishing the necessary notation in Section 2 and then
give a precise statement of the problem together with some examples in Section 3. Finally,
Section 4 will give a constructive, even algorithmic proof of the result by showing a particular
way to compute the multiindexing and verifying that is has the desired properties.

§2. Notation and basics

We use standard multiindex notation for polynomials in d variables. Indeed, to a multiindex
α = (α1, . . . , αd) ∈ Γ := Nd

0 the length

|α| =
d∑

j=1

αj

is associated and by Γn we denote the set of all multiindices of length ≤ n, i.e.,

Γn := {α ∈ Γ : |α| ≤ n} , n ∈ N0.

By Π = R[x] = R [x1, . . . , xd] we denote the ring of polynomials in d variables with real
coefficients, that is, all expressions of the forms

f(x) =
∑
α∈Γ

fα xα, xα =
d∏

j=1

x
αj

j ,

where only finitely many of the coefficients fα are different from zero. Moreover, we write

Πn :=

{
f ∈ Π : f(x) =

∑
α∈Γn

fα xα

}
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for the vector space of all polynomials of total degree ≤ n, n ∈ N0.
Let X = {x1, . . . , xN}, N = dim Πn = #Γn =

(
n+d

d

)
be a finite subset of Rd of proper

cardinality. We say that the interpolation problem based on X is poised with respect to Πn

or simply that X is poised for Πn if the interpolation is (uniquely) solvable for any prescribed
values at the points in X , that is, if for any y1, . . . , yN ∈ R there exists a (unique) polynomial
f ∈ Πn such that

f (xj) = yj, j = 1, . . . , N.

Equivalently, this is the case if the Vandermonde matrix

Vn (X ) :=
[
xα

j : j = 1, . . . , N, α ∈ Γn

]
(1)

is nonsingular, i.e., has nonzero determinant. By the requirement on N the matrix Vn(X ) in
(1) is a square one though it looks quite strange as rows and columns are indexed by different
structural entities. To avoid this effect, one can either linearly index the multiindices or multi-
index the points. Both approaches are more than cosmetic modifications, the first one leading
to the use of term orders for multiindices or the associated monomials, respectively, while the
second one leads to the concept of putting points into blocks, by rewriting X in the re–indexed
or multiindexed way X = {xα : α ∈ Γn}. There are, of course, many ways to do the multi-
indexing, but it is important to note that this can be done in such a way that the induced total
degree subproblems are poised as well as the following result from [16] shows.

Theorem 1. If X is poised with respect to Πn, it can be multiindexed in such a way that for
k = 0, . . . , n the subsets Xk := {xα : α ∈ Γk} are poised with respect to Πk.

Recall that this result leads to a Newton approach for the computation of the interpolation
polynomial and that this process not only be done algorithmically, but has been implemented
and tested as well, see [12] for more information.

§3. The main result

We now consider an extension of Theorem 1 to a wider variety of subsets. This is motivated
by considering the Aitken–Neville scheme once more. In fact, the univariate Aitken–Neville
scheme uses combinations of the interpolation polynomials of degree k with respect to the
points xj, . . . , xj+k and xj+1, . . . , xj+k+1 to compute (the value of) the interpolation polynomial
of degree k + 1 with respect to the points xj, . . . , xj+k+1, j + k ≤ n − 1. Since all the points
were assumed to be distinct, so are these subsets as well and consequently the interpolation
subproblems are trivially poised.

In the multivariate Aitken–Neville scheme from [17], on the other hand, the subproblems
to be considered are the ones based on the index sets

α + Γk := {α + β : β ∈ Γk} , |α|+ k ≤ n,

and these sets are obviously of a more intricate nature. In particular, their poisedness with
respect to Πk is all but obvious and depends on the way how the points are multiindexed.
Nevertheless, we have the following result from which Theorem 1 follows from immediately
by choosing α = 0.
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Theorem 2. If X is poised with respect to Πn then it can be multiindexed in such a way that
all the subsets

Xα+Γk
:= {xβ : β ∈ α + Γk} (2)

are poised with respect to Πk whenever |α|+ Γk ≤ n.

Before we prove the result in section 4, let us briefly illustrate its meaning by looking at
the simplest possible and most naturally multiindexed configuration, namely xα = α. This

Figure 1: The points xα = α, α ∈ Γ6, and some natural subsets thereof.

triangular grid configuration, depicted in Fig. 1 has already been considered in the earliest
references on multivariate (or, to be precise, bivariate) polynomial interpolation [2, 18] as it
can still be treated by tensor product methods. Since the index sets of the form α + Γk are
clearly isomorphic to Γk, the subsets Xα+Γk

are in this case the natural subsets of lower degree
among X with the same structure as the original index set.

§4. Construction and proof

Suppose that a setX of interpolation points of cardinality N =
(

n+d
d

)
is given. We first describe

the algorithm to multiindex the points. To that end, we let ≺ denote any degree compatible
term order. Recall that a term order is a well–ordering on (the free monoid) Γ such that α ≺ β
implies α + γ ≺ β + γ for any γ ∈ Γ, and that degree compatibility requires that |α| < |β|
implies α ≺ β for any α, β ∈ Γ. To be specific, we can choose the graded lexicographical term
order that defines α ≺ β iff either |α| < |β| or |α| = |β| and there exists an index 1 ≤ j < d
such that αk = βk, k = 1, . . . , j − 1, and αj < βj . Let, in addition, Λ(f) denote the leading
term of a polynomial f ∈ Π with respect to the term order ≺, i.e.,

Λ(f) = fδ xδ, δ := max
≺
{α ∈ Γ : fα �= 0} .

The multiindex δ = δ(f) is often called the multidegree of f , cf. [8]. A fundamental property
of multidegree and leading term is the fact that for any two polynomials f, g ∈ Π one has

δ (fg) = δ(f) + δ(g) and Λ (fg) = Λ(f) + Λ(g). (3)
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Lemma 3. If the point set X is poised for Πn then it can be indexed such that there exist
polynomials pα, qα ∈ Π|α|, α ∈ Γn, that have the properties

pα (xβ) = δα,β, |β| ≤ |α|, (4)

and
qα (xβ) = δα,β, β ≺ α, (5)

respectively.

The Newton fundamental polynomials pα from (4) were constructed by a Gram–Schmidt
orthogonalization method in [16], but the process can also be interpreted as a Gaussian elimi-
nation on the Vandermonde matrix with pivoting by points. Indeed, the difference between (4)
and (5) consists in choosing the upper triangular matrix U in the LU–factorization block upper
triangular with identity matrices on the diagonal or simply upper triangular, see also [4] where
this is called Gauß elimination by blocks.

Proof. Let αk, k = 1, . . . , N , denote the multiindices in Γn, ordered according to “≺” and set
fk(x) = xαk

. Then the matrix

[fk (xj) : j, k = 1, . . . , N ]

is nonsingular and Gauß elimination with piont (column) interchanging (if needed) computes a
decomposition[

fk

(
x′

j

)
: j, k = 1, . . . , N

]
= LU, where Lkk �= 0, Ukk = 1, k = 1, . . . , N,

and X = {x′
1, . . . , x

′
N}. Then the polynomials qα are defined as

qαk =
(
L−1 [fj : j = 1, . . . , N ]

)
k
, k = 1, . . . , N,

and satisfy

Λ (qαk) (x) = L−1
kk xαk

, k = 1, . . . , N, (6)

as well as (5). In particular, for k = 0, . . . , n the matrix

[qα (xβ) : |α| = |β| = k]

ordered with respect to ≺ is an upper triangular matrix Uk with all diagonal entries being equal
to one and so we define

pα =
(
U−1
|α| [qβ : |β| = |α|]

)
α
, α ∈ Γn,

to obtain the polynomials pα that satisfy (4).

A direct consequence of equation (6) in the proof above is the following observation.

Corollary 4. For α ∈ Γn the polynomials qα satisfy Λ (qα) (x) = cα xα where qα �= 0.
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Another interesting observation in the proof is that a rearrangement of points in the Gauß
elimination process is necessary if an only if a pivot element during the elimination becomes
zero, otherwise any arbitrary arrangement of the interpolation points would do. However, if the
situation of zero pivot occurs, then an arbitrarily small translation of the point in question re-
sults in a nonzero, though still very small and numerically inacceptable, pivot element. In other
words: in the “generic case” the actual way how the points are arranged is completely irrele-
vant, at least from a theoretical point of view. Observe, however, that the “nicely structured”
point configuration as the one in Fig. 1 is the opposite of general position as there are many
points lying on lines and intersections thereof. The same holds true for the Aitken–Neville
configurations from [17] which inherit the intersection structure of the multiindex grid.

Now we can state and prove the following result that immediately verifies Theorem 2.

Proposition 5. The multiindexing of points given in the proof of Lemma 3 has the property that
Xα+Γk

is poised with respect to Πk for any α ∈ Γn−k and k = 0, . . . , n.

Proof. The proof will be done by contradiction. Assuming that there exist 0 ≤ k ≤ n and
α ∈ Γn−k such that Xα+Γk

is not poised for Πk, we will show that X|α|+k = X0+Γ|α|+k
is not

poised for Π|α|+k. Since (4) implies that Xj is poised for Πj , j = 0, . . . , n, whenever X is
poised for Πn, see also Theorem 1, this then yields a contradiction.

So, suppose that Xα+Γk
is not poised for Πk and that α is minimal with respect to ≺ among

all such possibilities. In addition, let k be chosen minimally as well and set m := |α| + k.
Consequently, there exists a polynomial q ∈ Πk \ Πk−1 such that

q (Xα+Γk
) = 0, and Λ(q) ∈ Πk.

Define f := qα q, then f ∈ Πm satisfies

Λ(f) = Λ (qα) Λ(q) ∈ Πm and f
(
X|α| ∪ Xα+Γk

)
= 0.

Set Γ′ := Γm \
(
Γ|α| ∪ α + Γk

)
. Because of (5) there exist coefficients cβ , β ∈ Γ′, such that

g := f −
∑
β∈Γ′

cβ qβ

vanishes at all of Xm, i.e., g (Xm) = 0. In particular, it follows that Λ(g) % Λ(f) with equality
if and only if f (xβ) = 0 for all β ∈ Γm such that β ≺ α + Γk. Since Λ(f) ∈ Πm and
g ∈ Πm, this implies that g cannot be the zero polynomial and therefore Xm cannot be poised
with respect to Πm which yields the desired contradiction.

Indeed, Theorem 2 can be used as a characterization of poised configurations in terms of
poised subproblems.

Corollary 6. A set X ⊂ Rd of cardinality
(

n+d
d

)
is poised with respect to Πn if and only if it

can be multiindexed in such a way that all the subsets Xα+Γk
, α ∈ Γn−k, k = 0, . . . , n, are

poised with respect to Πk.
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§5. Minimal degree interpolation

The above result can be extended to a more general situation, namely to minimal degree inter-
polation, cf. [13], where the idea is to choose the interpolation space according to the point set.
This approach has been pursued first by de Boor and Ron in [3] by a scheme the named least
interpolation, see also [5] for further details. Algebraically, all the minimal degree degree in-
terpolation approaches can be viewed as interpolation by normal forms with respect to Gröbner
or H-bases, respectively, for the ideal

IX = {f ∈ Π : f(X ) = 0} ,

cf. [14, 15]. In this presentation here, we will only consider the case of what has been called
“minimal interpolation with minimal monomials” relative to a term order “≺” in the terminol-
ogy of [13]. For that end, let Θ ⊂ Γ be a finite set of multiindices and denote by

ΠΘ :=

{
f(x) =

∑
α∈Θ

fα xα : fα ∈ R

}

the polynomial subspace spanned by the set of monomials xΘ. It has been shown in [13] that for
any set X of distinct interpolation points of any cardinality N there exists an index set Θ ⊂ Γ,
#Θ = N , such that X is poised with respect to Θ and Θ is ≺–minimal in the following sense:
for any α ∈ Γ \Θ satisfying α ≺ max≺ Θ there exists a polynomial f ∈ ΠΘ∪{α} such that

δ(f) = α, and f (X ) = 0.

The construction of Θ is most conveniently done by a Gram–Schmidt orthogonalization process
in the following way.

Algorithm 1. For given X ⊂ Rd

1. initialize Θ ← ∅, X ′ ← X , qβ(x) = xβ , β ∈ Γ|X |, and α = 0.

2. While X ′ �= ∅

(a) If qα (X ′) �= 0 then

i. choose xα ∈ X ′ such that qα (xα) �= 0.
ii. Set qα ← qα

qα(xα)
, X ′ ← X ′ \ {xα} and Θ ← Θ ∪ {α}.

iii. For β ∈ Γ|X |, β ' α, set qβ ← qβ − qβ (xα) qα.

(b) If qα (X ′) �= 0 then qα is an element of a Gröbner basis for IX .

Result: index set Θ and points indexed as X = {xα : α ∈ Θ}.
Remark 1. This algorithm from [13] serves a double purpose: it computes fundamental inter-
polation polynomials qα, α ∈ Θ, of multidegree α such that

qα (xβ) = δα,β, α, β ∈ Θ, β ≺ α, (7)

from which the Newton fundamental polynomials pα, α ∈ Θ, with

pα (xβ) = δα,β, α, β ∈ Θ, |β| ≤ |α|, (8)
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can be obtained like in Lemma 3, but at the same time the algorithm also computes a (restricted)
Gröbner basis for the radical ideal IX . For the latter purpose, an almost identical algorithm has
already been used in [6].

Since the polynomials qα again have leading term cαxα, cα �= 0, we can use a refined
version of the argumentation as in Proposition 5 to obtain the following result.

Theorem 7. With the point arrangement X = {xα : α ∈ Θ} from Algorithm 1 we have that
for any α ∈ Θ and k ∈ N0 the point sets

XΘ
α+Γk

:= {xβ : β ∈ (α + Γk) ∩Θ}

are poised for
ΠΘ

α+Γk = {p ∈ Πk : xα p(x) ∩ ΠΘ �= ∅} . (9)

Here, (9) has to be understood in the sense that the polynomial xαp(x) has at least one
nonzero coefficient with an index in Θ.

Proof. Observe that the construction in Algorithm 1 ensures that for α ∈ Θ we have qα ∈ ΠΘ

and that δ (qα) = α. Therefore, the polynomial space spanned by qβ , β % α, is poised for the
points xβ , β % α. Assume again that there exist α ∈ Θ, a minimal k ∈ N0 and a nontrivial
polynomial q ∈ Πk such that q

(
XΘ

α+Γk

)
= 0 and xαq(x) ∩ ΠΘ �= ∅. Let α∗ ∈ Θ denote the

maximal one of them and note that |α∗| = |α| + k, α∗ ' α as well as α∗ = δ (q′), where q′

denotes the reduction of xαq(x) modulo IX or, more precisely, with respect to a Gröbner basis
of IX (for example the one computed as a by–product of Algorithm 1) according to “≺”, cf.
[8]. Set f = qα q and observe that usually f ′ will not belong to ΠΘ any more as this vector
space is not closed under multiplication.

Let f ′ be the reduction of f modulo IX then f ′ ∈ ΠΘ and δ (f ′) = δ (q′) = α∗. By
subtracting suitable multiples of qβ , β ≺ α∗, we can modify f ′ in such a way that

f ′ (xβ) = 0, β ≺ α∗,

while still f ∈ ΠΘ and δ (f ′) = α∗. But this contradicts (7) which ensures for any α ∈ Θ
that the polynomial spaces spanned by the monomials xβ , β ∈ Θ, β % α are poised for the
associated point sets xβ , β ∈ Θ, β % α.

Combining Theorem 7 with the results from [13, 14], we find that ΠΘ is a “good” interpo-
lation space for X .

Corollary 8. The space ΠΘ is a degree reducing interpolation space for the point set X . It is
even the vector space of all normal forms modulo the unique reduced Gröbner basis for the
ideal IX with respect to the degree compatible term order “≺”.
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