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A POSTERIORI ERROR ESTIMATOR FOR

FINITE VOLUME SCHEMES

Mohamed Amara, Lionel Nadau and David Trujillo

Abstract. In this paper, we are interested in the study of a posteriori estimators in linear
parabolic case for the classical 5 points or 9 points Cells Centered Finite Volume method.
Introducing the gradient of the unknown, the FV methods can be interpreted in terms of
mixed finite element methods. And we use this interpretation of the scheme in order to
construct an appropriate a posteriori estimator. The analysis of this estimator is done and
we present numerical simulations in order to illustrate the theoritical results.
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§1. Introduction

The Finite Volume (FV) methods are often used to solve conservative equations like those
encountered in fluid flows. These methods permit to keep locally the conservative aspect of
these equations since we integrate the latters on a small domain which is called control volume.
Furthermore, the dynamical adaptive mesh technics become an important tool in the devel-
oppement of simulators. They permit to improve the quality of the solution and decrease the
computational time. A posteriori estimator is an efficient tool to perform these techniques. We
can distinguish three kinds of a posteriori errors: residual estimation, estimation by solving
local problems and hierarchical estimation.
In this work, we only study the residual estimator class for a linear parabolic equation with a
Cells Centered Finite Volume method.
In the literature, we can find three kinds of results in the case of parabolic equations. First, we
have estimators developped for semi-discrete time equations (see [8, 10]). On the other hand,
space estimators class are obtained in a fixed time tn for a linear parabolic equation with a FEM
in one, two or three dimensions [5, 3]. At last, two approaches are investigated to establish a
time and space estimator. The first one is to find an estimator in time and space simultaneously
(see [6, 7, 12]), the secund one shares the study in two part: time in one hand, space on the
other hand. All the works presented above used FEM or Galerkin method. Bergam et al. [2]
established similar results in linear and nonlinear case with a Finite Element Finite Volume
method.
This work take as a starting point the techniques developped in Bergam et al. [2]. The space
discretisation is classical 5 points or 9 points Cells Centered Volume method and an implicit
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Euler’s scheme is used in the time discretisation. The reader could refer to [1] for the elliptic
case details and the proofs encountered here.
First we briefly recall the Finite Volume 5 or 9 points, then we present the a posteriori errors
results and we finished this paper with numerical results which prove the efficiency of the
constructed estimator.

§2. Five or nine points Finite Volume scheme

For simplicity, one presents the method on the Laplace’s problem and on a rectangular mesh.
(But the method can be extended for a general elliptic operator and on unstructured meshes).
Let be Ω ⊂ R2. In order to simplify the presentation we will suppose here that Ω is a rectangular
domain.
We study the following problem, where f is a function of L2(Ω):⎧⎪⎨⎪⎩

Find u solution of :

−∆u = f in Ω,

u = 0 on Γ.

(1)

2.1. Heuristic derivative of 5, 9 points cell centered scheme

Let Ph be a Ω rectangulation regular family (the closed rectangle are called Volume Control)
in the sense that:

• for each h, Ω̄ is the union of all elements of Ph,

• for each h, the intersection of two different elements of Ph, if it is not empty, is a corner
or a whole edge of both of them.

We also introduce the nodes which are the centers of these volumes.
Now, we explain the Finite Volume method.
Integrating the relation div∇u = f over the volumes and using Green’s formula, we obtain

∀V ∈ Ph

∫
∂V

∇u.n dσ = −
∫

V

f dx.

Different Finite Volume schemes can be obtained by various flux interpolations. Let be (∇u.n)γi

i = 1, 2, 3, 4 the flux through out the edge γi and n the outward unit normal . If we suppose the
flux to be constant on each edge of volume V we obtain the following formula, in regular mesh
as considered here:

(∇u.n)i+ 1
2
,j =

ui+1,j − ui,j

dxi

,

where dxi is the length between two centers of volumes and γi = i + 1
2
, j is the interface in the

middle of the segment [ui,j, ui+1,j]. The same formula is applied to the other three edges. We
therefore obtain the well-known scheme named the 5 points Finite Volume scheme.
In the same manner, the 9 points scheme is held by the coming estimated formula of the flux:

(∇u.n)i+ 1
2
,j =

1

dxi

(
3

4
ui+1,j +

1

8
ui+1,j+1 +

1

8
ui+1,j−1 − (

3

4
ui,j +

1

8
ui,j+1 +

1

8
ui,j−1)

)
.
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In the next paragraph, we give a mathematical formulation for these Finite Volume schemes
using a Finite Element (MFE).

2.2. Interpretation of the schemes in term of a MFE method

Considering the mesh Ph introduced in the latter paragraph, we construct a dual mesh named
Uh by taking the medians of each rectangle and the center of each rectangle for the vertices of
this dual mesh. The nodes of mesh Uh are defined as follows:

• The centers of Ph volumes,

• On the boundary of Ω: the centers of the faces (or edges) of the Ph volumes and in
addition the Ω conners.

We will call V a cell Ph and V 
 an element of Uh.

We introduce the discretisation spaces:

Wh = {ph ∈ H(div, Ω);∀V ∈ Ph, ph|V ∈ P1,0(V )× P0,1(V )}.

Mh = {uh ∈ H1
0 (Ω);∀V 
 ∈ Uh, uh|V � ∈ Q1(V


)},

We introduce ph ∈ Wh an approximation of ∇u and we enforce the next integral relation:

∀V ∈ Ph, uh ∈ Mh

∫
∂V

ph.n dσ =

∫
∂V

∇uh.n dσ.

As ph ∈ P1,0(V )× P0,1(V ), ph is entirely determinated by is value on the edges of the volume
V . Let be (ph.n)γi

i = 1, 2, 3, 4 the flux through out of the edge γi and n the outward unit
normal.

If we used a 5 points Finite Volume, we have the next formula:

(ph.n)i+ 1
2
,j =

ui+1,j − ui,j

dxi

,

where dxi is the length between two centers of volumes and γi = i + 1
2
, j is the interface in the

middle of the segment [ui,j, ui+1,j]. In the same idea, the 9 points scheme can be obtained.

Remark 1. We note ph is different from ∇uh.

In the next paragraph, we done a posteriori estimators for residual estimation method in the
case of the heat equation. This estimator is based on the difference: ph −∇uh.
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§3. The linear heat equation

3.1. Formulation of the linear heat equation

Let be Ω ∈ R2 a rectangle domain and T a fixed nonnegative real. We consider the time interval
[0, T ]. The study problem writes⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Find u such that :
∂u

∂t
−∆u = f in ]0, T [×Ω,

u = 0 on ]0, T [×Γ,

u(0, .) = u0(.) in Ω.

(2)

where f ∈ L2(0, T ; L2(Ω)) and u0 ∈ L2(Ω).
This problem admits a unique solution u such that u ∈ C0(0, T ; L2(Ω)) ∩ L2(0, T ; H1

0 (Ω)) (cf.
Lions et Magenes ([9],chapter 3 §4)).

3.2. Time and space discrete problem

We use an implicit Euler’s scheme for the time discretisation and the 5 or 9 points Finite Volume
scheme for the space discretisation. We seek two stair functions with respect of time: uh ∈
L2(0, T ; Mh) and ph ∈ L2(0, T ; Wh) such that un

h and pn
h are the restriction of uh and ph to In

respectively. ph is an approximation of p = ∇u. The time and space discrete problem writes:
∀n, 1 ≤ n ≤ N , ∀V ∈ Ph,⎧⎨⎩

1

mes V

∫
V

(un
h − un−1

h ) dV − τn div pn
h = τn fn

h ,

u0
h = u0 in V.

(3)

where fn
h |V =

1

mes V

∫
V

fn dx and τn the length tn − tn−1 such that
N∑

n=1

τn = T .

3.3. Notations

For all step function v ∈ L2(0, T ; H1
0 (Ω)), constant in time on each subinterval In, we define

the linear interpolation function in time vτ de C0([0, T ], H1
0 (Ω)) such that:

vτ (t) =
t− tn−1

τn

vn +
tn − t

τn

vn−1,

where vn is the restriction of v onto In 1 ≤ n ≤ N . Similar definitions are applied to
pτ , vhτ , phτ

We define the norms to be used as
∀ v ∈ C0(0, T ; H1

0 (Ω)), ∀ p ∈ C0(0, T ; (L2(Ω))2), ∀ t ∈ [0, T ],

|||(v, p)(t)|||2 = ||v(t)||20,Ω +

∫ t

0

{|v(s)|21,Ω + ||p(s)||20,Ω} ds
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In order to establish the a posteriori estimators, we share in two parts the quantity |||((u, p)(tn)
−(uhτ , phτ ))(tn)||| by a triangle inequality technique. We also obtain a time error part, namely,
|||((u, p) − (uτ , pτ ))(tn)||| and a space error part |||((uτ , pτ ) − (uhτ , phτ ))(tn)|||. We study
separetaly this two quantities. Furthermore, the estimators issued from this quatities are said
"optimal" estimators in the sense of Bernardi et al. [4] if they bound the exact norm error.

3.4. Time estimator ηn

For all n, 1 ≤ n ≤ N , we put ηn equal to:

ηn = (
τn

3
)

1
2 (|un

h − un−1
h |1,Ω + ||pn

h − pn−1
h ||0,Ω).

We underline the results given below are independent of the space discretisation.
Let be πτ an interpolation operator of continous functions from C0([0, T ]) to L2([0, T ]). More
precisely, for all function v belongs to C0([0, T ]), πτv is a constant function and is equal to
v(tn) on each interval [tn−1, tn], 1 ≤ n ≤ N .
We have the following proposition:

Proposition 1. Assume the function f belongs to C0(0, T ; L2(Ω)) and the function u0 belongs
to H1

0 (Ω). There exists a positive constant c such that

|||((u, p)− (uτ , pτ ))(tn)||| ≤ c

(
(1 + σ

1
2
τ )|||((uτ , pτ )− (uhτ , phτ ))(tn)|||

+(
n∑

m=1

η2
m)

1
2 + ||f − πτf ||L2(0,tn;L2(Ω))

)
.

where στ = maxnσn. For all n, 1 ≤ n ≤ N , we have

ηn ≤ c
(
||(un, pn)− (un

h, pn
h)||+ σ

1
2
τ ||(un−1, pn−1)− (un−1

h , pn−1
h )||

+ ||∇(u− uτ )||L2(tn−1,tn;L2(Ω))

+ ||∂(u− uτ )

∂t
||L2(tn−1,tn;H−1(Ω))

+ ||f − πτf ||L2(tn−1,tn;L2(Ω))

)
.

where ||(vm, pm)||2 = ||vm||20,Ω + τm|vm|21,Ω + τm||pm||20,Ω

Proof. see [1] for details.

3.5. A space estimator ηn,V

Let be ηn,V the following estimator:

ηn,V = hV ||
un−1

h − un
h

τn

+ fn
h + divpn

h||0,V + ||pn
h −∇un

h||0,V ,

We intend to prove that ηn,V is an estimator for the error |||((uτ , pτ )− (uhτ , phτ )(tn)|||.
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3.5.1. The upper bound of ηn,V

The upper bound of ηn,V is given by the following proposition:

Proposition 2. Let be f belongs to C0(0, T ; L2(Ω)) and u0 belongs to H1(Ω) such that u0
h ≡ u0,

then, for all tn, 1 ≤ n ≤ N , we have the next assessment:

|||((uτ , pτ )− (uhτ , phτ ))(tn)||| ≤ c

(
n∑

m=1

τm

∑
V ∈Ph

(h2
V ||fm − fm

h ||20,V + η2
m,V )

) 1
2

.

Proof. In order to obtain the correct assessments, one uses the Clement’s interpolation since
we have non-continuous functions. See [1] for further details.

3.5.2. The lower bound of ηn,V

The lower bound of ηn,V is given by:

Proposition 3. Assume f belongs to C0(0, T ; L2(Ω)) and u0 belongs to H1
0 (Ω). For all error

estimator ηn,V , we have the local assessment:

ηn,V ≤ c
(
hV ||

(un − un
h)− (un−1 − un−1

h )

τn

||0,V + ||pn − pn
h||0,V

+ |un − un
h|1,V + hV ||fn − fn

h ||0,V

)
.

Proof. The idea of the proof is due to Verfürth’s technique [11] which consists of introducing
a bubble function of the volume V . See [1] for more details.

3.6. Numerical tests

In this paragraph, we present two numerical tests. These tests exemplify the local and global
behaviours of the previous a posteriori error estimator. The first case is computed from a
regular solution and the secund case is issued from a non regular source term. We consider the
unit square domain ]0, 1[×]0, 1[ for all our numerical tests.

3.6.1. A regular solution

We take for this numerical test the following exact solution:

u(t, x, y) = sin(
π

2
t) sin(πx) sin(πy).

We compare here the global estimator ||pn
h −∇un

h||0,Ω named estimator 1 with the global es-
timator ηn,V named estimator 2. By this test, we want to look at the influence of the equation
residual. In the same time, we neglect also the estimator ηn in the both case to measure its
influency on the total estimator.
The figures (1(a)), (1(b)), (1(c)) present the time global behaviour of the both estimators and
the global exact error norm ||(·, ·)||n for different size of meshes.
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We remark that the two estimators feature are similar. The estimator 1 is suited better than the
estimator 2 for the exact error norm in this numerical test (the same behaviour can be observed
with the exact polynomial solution u(t, x, y) = t2 x (1− x) y (1− y)). From this first result,
we can also deduce that the time estimator and the term h2||fn − fn

h ||0,Ω could be neglected.
On the other hand, an important aspect of the a posteriori estimator is its local behaviour.
Therefore, we present the local error maps on the figures (1(d)), (1(e)), (1(f)), (1(g)), (1(h)),
(1(i)). We note that the local behaviour of these estimators are quite similar at the end of the
simulation but they are diffirent at the beginning.
Finally, this numerical test permits to show that the two estimators are very closed but it can
not conclude about the efficiency of one of them. However, the estimator ||pn

h −∇un
h||0,Ω is

easier to compute than the estimator ηn,V so, for the next test, we just compute the estimator 1
and analyse its behaviour in the case of a non regular solution.

3.6.2. A non regular solution

We compute a function f which support is an ellipse turning around a circle in the unit square.
Let be (xc(t), yc(t)) the ellipse center, (a, b) the two diameters and t a parameter which varies
in the interval [0, 1]. The center (xc(t), yc(t)) moves around a circle C which the center is the
point (1

2
, 1

2
) and the radius is r. We denote Ft the following set:

Ft ∀(x, y) ∈ [0, 1]× [0, 1],

(
x− xc(t)

a

)2

+

(
y − yc(t)

b

)2

≤ 1.

The function f is written

∀(x, y) ∈ [0, 1]× [0, 1], f(t, x, y) =

{
2 if (x, y) ∈ Ft,

0 otherwise.

On Figures (2), we show the local error map on each time step for the a posteriori estimator
||pn

h − ∇un
h||0,Ω. We verify that the most important values of the estimator are located on the

Ft set. This simulation shows that this estimator is well suited for an adaptive mesh refinement
strategy .
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Figure 1: The global errors time evolution and local errors map for the both estimators and
exact norm in the sinusoïd case.
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Figure 2: Local error map in the non regular solution case.
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