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RELATIVE EQUILIBRIA AND

BIFURCATIONS IN A 2–D HAMILTONIAN

SYSTEM IN RESONANCE 1:p.

V. Lanchares and A. I. Pascual

Abstract. In this work, we focus on a Hamiltonian system with two degrees of freedom
whose normal form in a neighborhood of the equilibrium solution up to order two, corre-
sponds to a subtraction of two harmonic oscillators in resonance 1:p, with p an odd number.
We introduce appropriate coordinates in the reduced phase space in order to study the ex-
istence of relative equilibria and bifurcations in terms of the free parameters of the system.
We do this for to the simplest case, the resonance 1:3, and then we comment how these
results can be extended for a resonance 1:p with p an odd number.
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§1. Introduction

The dynamics around equilibrium positions is of special interest in nonlinear two degrees of
freedom Hamiltonian systems. A close look to the orbits in a vicinity of them results in prac-
tical applications in real physical models. This is the case, for example, of the restricted three
body problem, where stable periodic orbits arise around the well known lagrangian equilib-
rium points [5]. Besides, theoretical results can be given about the stability properties of the
equilibrium point.

In this way, Arnold’s theorem [1] establishes the conditions for stability when the eigenval-
ues of the linear approximation are rational independent. Otherwise, specialized theorems are
needed. For instance, for concrete rational dependencies Markeev [8] gave the conditions of
stability. Recently, Cabral & Meyer [2] gave a more general result including those of Arnold
and Markeev as well as other cases of rational dependencies.

All the results mentioned above require to bring the Hamiltonian into its Birkhoff’s normal
form around the equilibrium position. It is worth to remark that the normal form is not the
same for the resonant (rational dependence) than for the nonresonant cases. In the first situation
the normal form provides a comprehensive description of the dynamics of the system around
the equilibrium position. Thus, a convenient starting point to study the dynamics around an
equilibrium position is its normal for up to a suitable order. In this sense,our goal will be to
study the structure of the phase flow. This is done, usually, by means of the characterization of
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the critical points and the parametric bifurcations. We will focus on the case of a critical point
in resonance 1:p, when the eigenvalues of the linear part satisfy the relation

ω1 ± pω2 = 0

The first step is to express the normal form of a two degrees of freedom Hamiltonian system
in resonance 1:p in a convenient manner. To this purpose it is necessary to know the structure
of those terms of the Hamiltonian that take part of the normal form. For instance, if we choose
a set of canonical complex variables (u, v, U, V ), the Hamiltonian function expresses as

H =
∞∑

s=2

⎡⎣ ∑
2(α1+α2)+(p+1)(α3+α4)=s

Cα1α2α3α4I
α1
1 Iα2

2 Iα3
3 Iα4

4

⎤⎦ ,

where I1 = uU , I2 = vV , I3 = uvp and I4 = UV p (see [7] for details).
The variables I1, I2, I3 and I4 are named invariants, as they do not change by the process

of normalization. They are also known as generators, because every term in the normal form
is generated by appropriate combinations of them. Besides, they determine the structure of the
phase space after normalization. Indeed, they are not all independent but satisfy the relation

I1I
p
2 = I3I4. (1)

Moreover, the first term of the normal form, which in our case is supposed to be proportional
to

pI1 − I2,

is an integral in the normalized system, so that the phase space is a collection of two dimen-
sional manifolds.

Due to the fact that the invariants introduced before are complex, a new set of real invariants
is preferable. This new set is introduced by means of suitable action-angle variables specially
useful to handle oscillators in resonance. These are the extended Lissajous variables [3]. In
terms of the extended Lissajous variables the real invariants are defined as

M1 = 1
2
Φ1, C1 = 2−(m+n)/2(Φ1 − Φ2)

m/2(Φ1 + Φ2)
n/2 cos 2nmφ1,

M2 = 1
2
Φ2, S1 = 2−(m+n)/2(Φ1 − Φ2)

m/2(Φ1 + Φ2)
n/2 sin 2nmφ1.

Now, the normal form reads

H =
∞∑

s=2

⎡⎣ ∑
2(α1+α2)+(p+1)(α3+α4)=s

Cα1α2α3α4M
α1
1 Mα2

2 Sα3
1 Cα4

1

⎤⎦ , (2)

where the first term is proportional to M2, that becomes a new integral. Furthermore, the
relation (1) becomes

C2
1 + S2

1 = (M1 + M2)(M1 −M2)
p, (3)

together with the restriction
M1 ≥ |M2|, (4)
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and M2 a constant.
The equation (3), subjected to the restriction (4), defines the reduced phase space. This is

a set of surfaces of revolution, one for each constant value of M2. In figure 1 three of these
surfaces are depicted for different values of M2. It is worth to note the difference for M2 < 0
and M2 ≥ 0. In the first case the vertex of the surface is a regular point whereas in the second
case it is singular and it can be proved that then it is an equilibrium point of the reduced system.

Figure 1: Resonance 1:3. Surfaces of revolution for different values of M2; M2 = 0, M2 = 1
and M2 = −1 respectively.

§2. The resonance 1:3

We center on the phase flow around an equilibrium position in the case of a resonance 1:p with
p an odd number. We begin with the simplest case, the resonance 1:3, and later we will discuss
how the results obtained for the 1:3 resonance can be generalized.

Taking into account equation (2) for the resonance 1:3, the Hamiltonian normal form up to
order 4 can be written in terms of the invariants as

H = ωM2 + a1M
2
1 + a2M1M2 + a3M

2
2 + a4C1 + a5S1. (5)

We will assume that H(M2 = 0) �= 0 (non degenerate case), therefore a2
1 + a2

4 + a2
5 �= 0. At

this point, some reductions allow to simplify the analysis of the Hamiltonian system. As M2 is
a constant, we can drop those terms which are integer powers of M2. After that, Hamiltonian
(5) reduces to

H = a1M
2
1 + a2M1M2 + a4C1 + a5S1. (6)

If a2
4 + a2

5 = 0, then
H = a1M

2
1 + a2M1M2, (7)

and the dynamics on the reduced phase space is trivial. The orbits are circumferences around
the vertex of the reduced phase space provided (7) defines, for each appropriate H, a plane
parallel to M1 = 0.



192 V. Lanchares and A. I. Pascual

If a2
4 + a2

5 �= 0, the dynamic is more intricate. First of all, we notice that it is possible to
reduce the number of parameters in (6) by means of a suitable rotation around the axis M1.
This allows to eliminate the term in S1 or C1. So as a4 or a5 are not zero, we can suppose
without loss of generality that a5 �= 0, and then,H can be written as

H = αM2
1 + βM1M2 + γS1, (8)

with γ �= 0. Furthermore another reduction can be performed. It consists on dividing (8) by γ
and then, the final form of the Hamiltonian is

H = aM2
1 + bM1M2 + S1, (9)

where a and b are the essential parameters.

2.1. Equilibria and stability

The equations of the motion corresponding to equation (9) are derived from the Poisson brack-
ets between the variables S1, C1, M1 (see [3] for details). They are

Ṁ1 = −3 C1,

Ṡ1 = 3 C1 (2aM1 + bM2),

Ċ1 = −3 S1 (2aM1 + bM2)− 3 (M1 −M2)
2 (M2 + 2M1).

Fixed a value of M2, a point (C1, S1, M1) is an equilibrium if it verifies one of the two
following conditions

- It is the vertex and M2 ≥ 0.

- C1 = 0 and M1 is a root of the polynomial

P(M1) = 4(1− a2)M3
1 − 4a(a + b)M2M

2
1 − (3 + b2 + 4ab)M2

2 M1− (1 + b2)M3
2 , (10)

subjected to the restriction (4).

To begin with, we consider the simplest case M2 = 0. When M2 = 0, three cases arise:

- if a2 < 1, there are two asymptotic orbits to the vertex, which is unstable. Indeed, it is
the only critical point and the rest of the orbits are unbounded (see figure 2).

- if a2 > 1, the vertex is again the only critical point and all the orbits are bounded sur-
rounding the vertex (see figure 2).

- if a2 = 1, the vertex is not an isolated equilibrium. In fact, all the points on the curve
S2

1 = M4
1 with M1 > 0 are equilibria. The rest of the orbits are unbounded as in the case

a2 < 1. This case can be considered as a limit case which separate the stable situation
for a2 > 1 from the unstable one for a2 < 1. Indeed, if a2 = 1, the stability of the
vertex does not follow from the Hamiltonian function (9) and higher order terms must be
considered.
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Figure 2: Orbits for M2 = 0 when a2 �= 1, unstable (a2 < 1) and stable (a2 > 1) cases (orbits
are projected onto the plane M1 = 0).

When M2 �= 0, the vertex is an equilibrium point if and only if M2 ≥ 0. The rest of
equilibria satisfy C1 = 0 and M1 a root of polynomial (10) under restriction (4). Despite of
P(M1) is a polynomial of degree 3 and there are exact formulae for the roots, they are not
practical because the coefficients of P depend on the parameters a and b. So it is not easy to
decide whether if they are real or complex and if they satisfy the condition (4). It is for this
reason that we focus on the number of equilibria, rather on the explicit coordinates for them.
This is a useful technique to find bifurcations because they take place when the number of
equilibria changes. In this way, the number of equilibria changes when

- some of the roots of P(M1) reach the extremes of the interval [|M2|, +∞). This occurs
if

* P(|M2|) = 0,

* the degree of P(M1) is less than 3, that is, a2 = 1.

- some of the roots of P(M1) have a multiplicity bigger than 1.

In fact, the curves defined by P(|M2|) = 0 and a2 = 1 are bifurcation lines in the parameter
plane (a, b). Nevertheless, a careful study is necessary. First of all, we note that

P(|M2|) = −M2
2

[
M2 − |M2|+ (2a + b)2(M2 + |M2|)

]
. (11)

Then, when M2 < 0, P(|M2|) is proportional to M3
2 and, thus, it can not be zero and no

bifurcation line appears. On the other hand, if M2 > 0 we have

P(M2) = −2(2a + b)2M3
2

which is zero if and only if 2a + b = 0. However, if 2a + b �= 0, P(M2) < 0 and then the line
2a + b = 0 does not give rise to any bifurcation line in the sense that if it is crossed the number
of equilibrium points changes. Eventually, on this line two equilibrium points can collide but
as soon as the line is crossed the two equilibria appear again.

On the contrary, a2 = 1 is a bifurcation line in the sense that as it is crossed the number
of equilibria changes. Nevertheless, the number of critical points along the two straight lines
a = ±1 changes with the values of b. This is not difficult to see if we take into account the
discriminant of the polynomial P which becomes

P(M1) = −4a(a + b)M2M
2
1 − (3 + b2 + 4ab)M2

2 M1 − (1 + b2)M3
2 .
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We note that if a + b = 0, P is a constant and none equilibrium is derived. On the contrary, if
a + b �= 0, P is a second degree polynomial whose discriminant is

∆ = M2
2 (8ab(1− b2) + (b + 3)2 − 16a2).

In the special case a = ±1 ∆ can be factorized as

∆ = −M2
2 (a− b)2(7a− b)(a + b).

and it can be concluded that

- if M2 > 0,

* if (a = 1, b < −1, b �= −2) or (a = −1, b > 1, b �= 2), 2 equilibria (one of them,
the vertex).

* another case, 1 equilibrium (the vertex).

- if M2 < 0,

* if b = 7a or (a = 1, b < −1) or (a = −1, b > 1) , 1 equilibrium.

* if (a = 1, b > 7) or if (a = −1, b < −7), 2 equilibria.

* another case, 0 equilibria.

Once we have analyzed the number of roots occurring when a root of P(M1) reaches the
extremes of the interval [|M2|, +∞), we proceed to establish the conditions under a multiple
root of P(M1) appears. Before that, we recall a result related on the concept of discriminant
[4].

Theorem 1. Let be p(x) = x3 + ax2 + bx + c a monic polynomial of degree 3. Then

• D(p) > 0 ⇐⇒ p(x) has 3 real and different roots.

• D(p) < 0 ⇐⇒ p(x) has 1 real root and 2 conjugate complex roots.

• D(p) = 0 ⇐⇒ p(x) has 3 real roots, some of them multiple.

We can suppose that a2 �= 1. Then, roots of polynomial P are the same as the roots of the
monic polynomial

P̂ = M3
1 −

4a(a + b)

4(1− a2)
M2M

2
1 −

(3 + b2 + 4ab)

4(1− a2)
M2

2 M1 −
(1 + b2)

4(1− a2)
M3

2 ,

whose discriminant is given by

D(P̂) = −M6
2 (a− b)2 f(a, b)

16(a− 1)4(a + 1)4
,

where
f(a, b) = 27− 18(2a2 − 2ab− b2) + (2a− b)2(4a2 − b2).

From theorem 1, it follows that
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Theorem 2. There exists functions f1(a), f2(a) such that

• P has one real root ⇐⇒ f2(a) < b < f1(a) with b �= a.

• P has 3 different real roots ⇐⇒ b > f1(a) or b < f2(a).

• P has 3 real roots, some of them multiple ⇐⇒ b = f1(a) or b = f2(a) or b = a.

Figure 3: The straight line b = a and the curves f1(a) and f2(a).

The expression of these two functions are too much involved so we do not write them. They
are depicted in figure 3. We note that they are symmetric respect to the origin and that they
present a singularity for a = ±1 respectively. In fact, they can be considered as two branches
of an algebraic curve with a cusp for a = ±1. A careful application of the theorem 2 proves
that each branch of the algebraic curve determines a bifurcation line depending on the sign of
M2.

Collecting all the considerations made previously it is possible to derive all the bifurcation
lines taking into account whether the number of equilibrium points changes when they are
crossed. In figure 4, a partition of the parameter plane is depicted where the bifurcation lines
divide the plane into several regions where the number of equilibria changes. It is worth to note
that different partitions appear when M2 > 0 or M2 < 0.

• For M2 > 0, there are 5 regions where the number of equilibria is 1, 2 or 3.

• For M2 < 0, there are 7 regions where the number of equilibria ranges from 0 to 3.

Figure 4: Division of the parameter plane (a, b) for M2 > 0 and M2 < 0. The number in the
regions indicates the number of equilibria.
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We also note that if a2 < 1 (the condition for instability), the number of equilibria is even
(0 or 2). On the other hand, if a2 > 1 (the condition for stability), the number of equilibria is
odd (1 or 3). Finally, we note that there are four different types of possible flows as a function
of the number of equilibria and they are depicted in figure 5.

Figure 5: The four different types of flows depending on the number of equilibria projected
onto the plane M1 = 0. Note that for an odd number of equilibria all the orbits are bounded.

§3. The resonance 1:p for p an odd number

Now, we consider a resonance 1:p with p an odd number. The Hamiltonian normal form up to
order p + 1 can be written in terms of the invariants, as

H = P(M1, M2) + β1C1 + β2S1,

where P(M1, M2) is a polynomial of degree less or equal than p+1
2

. We can perform similar
reductions as those made in resonance 1:3. As M2 is a constant, we can drop the terms depend-
ing only on M2. If β2

1 + β2
2 = 0 the orbits are circumferences around the vertex of the surface

(3). In addition, the vertex is the unique equilibrium point and it is stable.
If β2

1 + β2
2 �= 0, we can make a suitable rotation about the axis M1 that allows to drop the

term in C1 (or in S1). We suppose that, after reduction,H is written as

H = P(M1, M2) + γS1,

with γ �= 0. Finally, we can divideH by γ, obtaining

H = P(M1, M2) + S1,

with P(M1, M2) a polynomial with director coefficient equal to a.
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As in the case of the resonance 1:3, we are interested on the number of equilibrium points
rather than in the explicit expressions of them. In this way, we look for bifurcation hypersur-
faces which are mainly determined for the changes in the number of equilibria. Now, apart
from the vertex, the rest of equilibria are related with the roots of a p degree polynomial in M1

such that M∗
1 > |M2|, being M∗

1 one of those roots.
It is worth to note that a = ±1 is a hypersurface of bifurcation and, as in the resonance 1:3,

if a2 > 1 we have a condition of stability in the sense that all the orbits are bounded. Moreover,
the number of equilibrium points must be odd. On the other hand, if a2 < 1 we have a condition
of instability and there always exists a set of unbounded orbits. In addition, the number of
equilibria must be even. From this considerations it is not difficult to figure the different types
of phase flow, although we are not able to determine the bifurcation hypersurfaces in terms of
the free parameters of the system.
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