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CONSISTENCY OF A CLASS OF RK
METHODS

FOR INDEX-2 DAES

Inmaculada Higueras and Teo Roldán

Abstract. When index 2 semi-explicit differential algebraic equations (DAEs) are solved
with a Runge-Kutta method (A, b), a standard assumption is the regularity of the matrix
coefficient A. However, Runge-Kutta methods with singular matrix coefficient A can also
be used for index 2 DAEs if the matrix A has a special structure. In this case, the standard
consistency analysis is not longer valid. In this paper we give conditions to ensure a certain
order of consistency.
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§1. Introduction

We consider semi-explicit index-2 differential algebraic systems of the form{
y′ = f(y, z) y(x0) = y0

0 = g(y) z(x0) = z0 ,
(1)

where f : Rl×Rm −→ Rl and g : Rl −→ Rm are sufficiently smooth functions, and the matrix
gyfz is invertible in a neighborhood of the solution of (1).

If we consider an s-stage Runge-Kutta method (A, b) to solve (1), a standard assumption is
the regularity of the matrix A. Nevertheless we can also use methods with singular matrices of
the form

0 0 0t

c̄ a Ā
b1 b̄t

(2)

where a ∈ Rs−1 and Ā is an (s − 1) × (s − 1) regular matrix [9]. On the method (A, b) we
assume that conditions C(1) and B(1) hold, i.e.

a + Āē = c̄ (3)

b1 + b̄tē = 1 (4)



180 Inmaculada Higueras and Teo Roldán

where ē = (1, . . . , 1)t ∈ Rs−1. Moreover, in order to have R(∞) bounded, with R(z) the
stability function of the method, we impose

b1 − b̄tĀ−1a = 0 . (5)

In this way, (3)-(5) imply
b̄tĀ−1c̄ = 1 . (6)

For these methods, the first internal stages are Y1 = yn, Z1 = zn, and the rest of the stages
are given by the non-linear system

Ȳn+1 = ē⊗ yn + h a⊗ f(yn, zn) + h(Ā ⊗ Il)f(Ȳn+1, Z̄n+1) , (7)

0 = g(Ȳn+1) , (8)

where Ȳn+1 = (Y t
2 , . . . , Y t

s )t ∈ Rl(s−1), f(Ȳn+1, Z̄n+1) = (f(Y2, Z2)
t, . . . , f(Ys, Zs)

t)t ∈
Rl(s−1), and in an analogous way for Z̄n+1 and g(Ȳn+1) . The symbol ⊗ denotes the Kronecker
product. As the matrix Ā is regular, system (7)-(8) can be solved for Ȳn+1 and Z̄n+1.

Once these values have been computed, with condition (5), we obtain

yn+1 = R0(∞)yn + (b̄tĀ−1 ⊗ Il) Ȳn+1 ,

where R0(∞) = 1− b̄tĀ−1ē, and similarly we can compute

zn+1 = R0(∞)zn + (b̄tĀ−1 ⊗ Im) Z̄n+1 .

If the method is stiffly accurate, i.e. asi = bi, i = 1, . . . , s, we simply obtain

yn+1 = Ȳn+1,s zn+1 = Z̄n+1,s .

Observe that in this case the numerical solution satisfies g(yn+1) = 0. If the method is not
stiffly accurate, the numerical solution must be projected onto the constraint g(y) = 0 (see [1],
[9]). Examples of methods of the form (2) are Lobatto IIIA methods and the ESDIRK methods
considered for example in [4], [11], [2] and [10].

Runge-Kutta methods with singular matrix coefficient A of the form (2) have been studied
in [9]. In [9, Theorem 5.1] local errors for stiffly accurate methods are given in terms of the
simplifying conditions B(p), C(q) and D(r). More precisely, B(p), C(q) and D(r) ensure
that the local errors are δyh(x0) = ϑ(hmin{p,2q,q+r+1}+1), for the differential component, and
δzh(x0) = ϑ(hq) for the algebraic one. The following example shows that this order bound is
not sharp.

Example 1. We consider the family of four stage stiffly accurate methods satisfying B(3) and
C(2) [4],

0 0 0 0 0

2λ λ λ 0 0

c3
6c3λ− 4λ2 − c2

3

4λ

c3u1

4λ
λ 0

1
12u2λ

2 + 6u3λ− u3

12c3λ

6λu2 + u3

12λu1

6λ2 − 6λ + 1

3c3u1

λ

(9)
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with
u1 = c3 − 2λ , u2 = 1− c3 , u3 = 3c3 − 2 .

We choose λ ≈ 0.43586652 to get R(∞) = 0. For this value of λ and any c3, Theorem 5.1
in [9] states that δyh(x0) = ϑ(h4), and δzh(x0) = ϑ(h2), and thus Theorem 5.2 in [9] ensures
order of convergence 3 for the differential component y and order 2 for the algebraic component
z.

We have considered the problem

y′
1 = y1 y2

2 z2

y′
2 = y2

1 y2
2 − 3y2

2 z2 t ∈ [1, 2]

0 = y2
1 y2 − 1

and we have tested this method with two values of c3, namely c3 = 0.75 and c3 = 1.153799789.
In Table I we show the observed orders for the differential variable y and the algebraic one z.

c3 = 0.75 c3 = 1.153799789

y z y z

h = 0.01 2.96 2.19 2.97 2.96

h = 0.005 2.98 2.11 2.98 2.98

h = 0.0025 3.00 2.06 3.00 2.99

Table I. Observed orders

We see that for c3 = 0.75 the order is as stated in Theorem 5.2 in [9], but for c3 =
1.153799789 the order for the algebraic variable z is higher. �

In this paper we explore the order of consistency for Runge-Kutta methods of the form
(2) and give sharp order conditions in terms of the rooted trees. We also ensure certain order
of consistency with the help of some special simplifying assumptions. The rest of the paper
is organized as follows. In Section 2, we review some results on Runge-Kutta methods with
regular matrix coefficient A. These results are extended in Section 3 for Runge-Kutta methods
with matrix coefficient of the form (2).

§2. Review on RK methods with regular matrix coefficient A
In this section we briefly review some results for RK methods (A, b) with A regular [6, VII.4
and VII.5]. In [6, VII.4] estimations of the local error are given in terms of the simplifying
conditions B(p) and C(q) whereas in [6, VII.5] they are given in terms of rooted trees. It is
well known that the order of obtained from the simplifying assumptions is not optimal, and
usually the observed order of convergence is greater than the predicted one. This is not the case
when rooted trees theory is used. The drawback of the rooted trees theory is its complexity
when high orders are desired.
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For index-2 DAEs the DA2-series theory is used. We denote by DAT2 = DAT2y ∪
DAT2z the set of rooted trees with two type of vertex, meagre and fat. The expression
[t1, . . . , tµ, u1, . . . , uν ]y denotes the tree which is obtained by joining the roots of t1, . . . , tµ, u1

, . . . , uν to a meagre vertex whereas [t1, . . . , tµ]z denotes the tree obtained by joining the roots
of t1, . . . , tµ to a fat vertex, provided that t1 �= [u]y if µ = 1 . The letter τ denotes the tree
consisting of a single meagre vertex. The order of a tree t ∈ DAT2 , denoted by ρ(t) , is the
difference between the number of meagre and fat vertices of that tree. Finally, given two vec-
tors u, v ∈ Rs, u•v denotes the product component by component. For further details, see [5],
[6].

The internal stages of the Runge-Kutta method [5, Theorem 5.7] can be written as as DA2-
series in terms of the coefficients Φy(t) and Φz(u) which are defined by

Φy( ∅y )= e , Φz( ∅z ) = e , Φy(τ) = c ,

Φy(t) = ρ(t)A [Φy(t1)• . . . •Φy(tµ)•Φz(u1)• . . . •Φz(uν)] , if t = [t1,. . ., tµ, u1,. . ., uν ]y ∈ DAT2y ,

Φz(u) =
1

ρ(u) + 1
A−1[Φy(t1)• . . . •Φy(tµ)] , if u = [t1,. . ., tµ]z ∈ DAT2z .

We remark that these coefficients Φy(t) and Φz(u) are related to the coefficients φy(t) and
φz(u) defined in [5] by Φy(t) = γ(t)Aφy(t), Φz(u) = γ(u) φz(u).

We introduce the notation δyh(x) = y1− y(x+h) and δzh(x) = z1− z(x+h) for the local
error for the variable y and z respectively, and P (x0) = I − (fz(gyfz)

−1gy)(y0, z0). We have
the following result.

Theorem 1. [6, VII, Theorem 5.8]

1. The local error satisfies δyh(x0) = ϑ(hp), P (x0)δyh(x0) = ϑ(hp+1) if

btA−1Φy(t) = 1 ∀t ∈ DAT2y , 1 ≤ ρ(t) ≤ p− 1 (10)

and those of order ρ(t) = p which are not of the form [u]y with u ∈ DAT2z.

2. The local error satisfies δzh(x0) = ϑ(hr) if

btA−1Φz(u) = 1 ∀u ∈ DAT2z , 1 ≤ ρ(u) ≤ r − 1 (11)

To apply the above result, the complete set of trees up to a given order must be constructed.
As the number of trees increases considerably with the order, handling the set of trees for
high orders is quite cumbersome. That is why in some cases it is preferred to get the order of
consistency with the help of simplifying conditions, in spite of the fact that the order bounds
obtained are not sharp.

Theorem 2. Consider a Runge-Kutta method with coefficients (A, b) with A regular. Then

1. [6, VII, Theorem 5.10] If the method is stiffly accurate, then the conditions B(p), C(q),
D(η) with p ≤ 2q and p ≤ q + η + 1 imply that the y-component of the local error
satisfies δyh(x0) = ϑ(hp+1). Moreover if f is linear in z, then the assumption p ≤ 2q
can be relaxed to p ≤ 2q + 1.
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2. Conditions B(p) and C(q) with p ≥ q, imply that δzh(x0) = ϑ(hq).

Proof. Part 2. It can be checked that C(q) implies that for any tree u ∈ DATz with ρ(u) ≤
q − 1, we get Φz(u) = cρ(u). Hence, using condition B(p), with p ≥ q, we obtain (11) for
r = q.

Although Theorem 2 is extremely useful for methods with high stage order q, it gives poor
results for methods with low stage order. For example, with C(2) and B(3) we can only ensure
δyh(x0) = ϑ(h4) and δzh(x0) = ϑ(h2). Theorem 2 can be improved if another set of conditions
is considered [3],

A1(s) : btA−1ck = 1 k = 1, . . . , s

A2(s
′) : btA−1e = btA−2c

btA−2ck = k k = 1, . . . , s′ .

The following result was proved in [7].

Theorem 3. [7] If the coefficients of the Runge-Kutta method satisfy B(p), C(q), D(η) and
A1(s), with q ≤ p ≤ min{2q, q + 2}, p ≤ q + η + 1, and p ≤ s + 1, then δhy(x0) = ϑ(hp)
and P (x0)δyh(x0) = ϑ(hp+1). Moreover if f is linear in z, then the assumption p ≤ 2q can be
relaxed to p ≤ 2q + 1.

If the coefficients of a Runge-Kutta method satisfy B(q), C(q) and A2(q+1), then δzh(x0) =
ϑ(hq+1).

Thus conditions B(2) and C(2) together with A2(3) ensure δzh(x0) = ϑ(h3).

§3. Results for RK methods with singular coefficient matrix A

As it has been pointed out previously, the above results require the matrix A to be regular. A
simple way to transfer them to methods of the form (2) is to embed the method (2) into

ε ε 0t

c̄ a Ā
b1 b̄t

=
cε Aε

bt
. (12)

If ε �= 0, the coefficient matrix is regular and we can apply the above results. As the internal
stages Yn,ε, Zn,ε for this numerical method converge to (yn−1, Ȳn) and (zn−1, Z̄n) respectively
when ε tends to zero, the results can be transferred to the method (2).
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3.1. Extension of Theorem 1

In order to apply Theorem 1, we simply have to ensure that Φy,ε, Φz,ε are bounded when ε tends
to zero. Recall that the matrixA−1

ε , which contains the term 1/ε, is involved in the definition of
these functions. In [8] it was proved that for the ε-method, the functions Φy,ε and Φz,ε satisfy

Φ∗,ε(t) =

(
ϑ
(
ερ(t)
)

ψ∗(t) + ϑ(ε)

)
∀ t ∈ DAT2 , ρ(t) ≥ 1 ,

where the functions ψy(t) : DAT2y → Rs−1 and ψz(u) : DAT2z → Rs−1 are defined recur-
sively for the coefficients

c̄ Ā
as

ψy( ∅y )= Ā−1c̄ , ψz( ∅z ) = Ā−1c̄ , ψy(τ) = c̄ ,

ψy(t ) = ρ(t) Ā [ψy(t1)• . . . •ψy(tµ)•ψz(u1)• . . . •ψz(uν)] , if t = [t1,. . ., tµ, u1,. . ., uν ]y ∈ DAT2y ,

ψz(u) =
1

ρ(u) + 1
Ā−1[ψy(t1)• . . . •ψy(tµ)] , if u = [t1,. . ., tµ]z ∈ DAT2z .

In particular, for the order one trees it holds

Φy,ε(τ) =

(
ε
ψy(τ)

)
,

Φz,ε(u1,1) =

(
1
2
ε

ψ(u1,1)− 1
2
εĀ−1

a

)
, Φz,ε(u1,2) =

(
ε
ψz(u1,2)

)
.

with u1,1 = [τ, τ ]z and u1,2 = [[τ ]y]z. Next we extend Theorem 1.

Theorem 4. Consider a Runge-Kutta method of the form (2). Assume that condition (5) holds.
Then

1. The local error for the differential component δyh(x0) satisfies δyh(x0) = ϑ(hp),
P (x0)δyh(x0) = ϑ(hp+1) if

b̄tĀ−1ψy(t) = 1 ∀t ∈ DAT2y , 1 ≤ ρ(t) ≤ p− 1 (13)

and those trees of order p which are not of the form [u]y with u ∈ DAT2z.

2. The local error δzh(x0) for the algebraic component satisfies δzh(x0) = ϑ(hr) if

b̄tĀ−1ψz(u) = 1 ∀u ∈ DAT2z , 1 ≤ ρ(u) ≤ r − 1 . (14)

Proof. We simply have apply Theorem 1 to the ε-method, and take the limit as ε tends to zero.
A simple computation gives

btA−1
ε Φ∗,ε(t) = b̄tĀ−1ψ∗(t) + ϑ(εmin{ρ(t)−1,1}) .
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Hence, if ρ(t) ≥ 2, when ε tends to zero we obtain (13) and (14). It remains to prove conditions
(13) and (14) for the order one trees. There is one tree in DATy with ρ(t) = 1, namely t = τ .
In this case,

btA−1
ε Φy,ε(τ) = b1 − b̄tĀ−1a + b̄tĀ−1ψy(τ) .

Thus, using condition (5), we obtain (13). In DATz there are two trees with ρ(u) = 1, namely
u1,1 = [τ, τ ]z and u1,2 = [[τ ]y]z. We compute

btA−1
ε Φz,ε(u1,1) =

1

2

(
b1 − b̄tĀ−1a

)
− 1

2
ε b̄tĀ−2a + b̄tĀ−1ψz(u1,1) ,

btA−1
ε Φz,ε(u1,2) = b1 − b̄tĀ−1a + b̄tĀ−1ψz(u1,2) .

In this way, using condition (5), when ε tends to zero we obtain (14).

In Table II we give the order conditions for the trees in DATy with 1 ≤ ρ(t) ≤ 3, and those
of order 4 which are not of the form [u]y, with u ∈ DATz. For the trees with ρ(t) = 2, 3, we
show the conditions associated to trees of the form [u]y, with u ∈ DATz. In Table III we give
the trees in DATz with 1 ≤ ρ(t) ≤ 2.

ρ(t) Conditions

1 b̄tA−1 c̄ = 1

2 b̄t c̄ = 1
2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[u]y b̄tĀ−1 c̄2 = 1

3 b̄t
(
Ā−1 c̄2 • c̄

)
= 2

3 b̄t
(
Ā−1 c̄2

)2 = 4
3

b̄t c̄2 = 1
3 b̄t Ā c̄ = 1

6

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[u]y b̄t Ā−1 c̄3 = 1 b̄t Ā−1 ( c̄ •A c̄ ) = 1
2

4 b̄t
(
Ā−1 c̄2 • c̄2

)
= 1

2 b̄t
( (
Ā−1 c̄2

)2 • c̄
)

= 1

b̄t
(
Ā−1 c̄2

)3 = 2 b̄t
(
Ā−1 c̄3 • c̄

)
= 3

4

b̄t
(
Ā−1
(
c̄ • Ā c̄
)

• c̄
)

= 3
8 b̄t
(
Ā−1
(
c̄ • Ā c̄
)

• Ā−1 c̄2
)

= 3
4

b̄t
(
Ā c̄ • Ā−1 c̄2

)
= 1

4 b̄t
(
Ā−1 c̄3•Ā−1 c̄2

)
= 3

2

b̄t Ā
(
Ā−1 c̄2 • c̄

)
= 1

6 b̄t Ā
(
Ā−1 c̄2

)2 = 1
3

b̄t c̄3 = 1
4 b̄t

(
c̄ • Ā c̄
)

= 1
8

b̄t Ā2 c̄ = 1
24 b̄t Ā c̄2 = 1

12
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Table II. Order conditions for t ∈ DATy

ρ(u) Conditions

1 b̄tA−1 c̄ = 1 b̄tĀ−2 c̄2 = 2

2 b̄t c̄ = 1
2 b̄tĀ−1 c̄2 = 1

b̄t Ā−1
(
c̄ • Ā−1 c̄2

)
= 2 b̄t Ā−1

(
Ā−1 c̄2

)2 = 4

b̄t Ā−2 c̄3 = 3 b̄t Ā−2
(
c̄ • Ā c̄
)

= 3
2

Table III. Order conditions for u ∈ DATz

Example 2. We consider again the method (9). For any c3, the conditions for ρ(t) ≤ 3 in
Table I and ρ(u) = 1 in Table II are satisfied. It can be checked that for c3 = 1.153799789 all
the conditions in Table II for ρ(u) = 2 are also satisfied. However, for c3 = 0.75, conditions
b̄t Ā−2 c̄3 = 3 and b̄t Ā−2

(
c̄ • Ā c̄
)

= 3
2

in Table II are not fulfilled. �

3.2. Extension of Theorem 2

Observe that in general, the simplifying conditions are not transferred from the original method
(2) to the ε-method. For example, the ε-method only satisfies C(1) with independence of the
C(q) condition satisfied by (2). This fact is not a drawback because as we will take the limit
when ε tends to zero, it is enough to consider the simplifying assumptions in the limit case. In
[8] the simplifying assumptions for the ε-method were defined as

Bε(p) : lim
ε→0

(
btc k−1

ε − 1

k

)
= 0 , k = 1, . . . , p

Cε(q) : lim
ε→0

(
Aεc

k−1
ε − ck

ε

k

)
= 0 , k = 1, . . . , q

Dε(r) : lim
ε→0

(
(b • c k−1

ε )tAε −
1

k

[
bt − (b • ck

ε)
t
])

= 0 , k = 1, . . . , r .

It can be proved [8, Proposition 6] that the method (2) satisfies B(p), C(q), D(r) if and only if
the ε-method satisfies Bε(p), Cε(q), Dε(r) respectively. Thus we can use for the ε-method the
same simplifying conditions as for the method (2).

Applying Theorem 2 to the ε-method and taking the limit when ε tends to zero, we obtain
the following result.

Theorem 5. Consider a Runge-Kutta method of the form (2).

1. If bi = asi, i = 1, . . . , s, then the conditions B(p), C(q), D(η) with p ≤ 2q and p ≤
q + η + 1 imply that the y-component of the local error satisfies δyh(x0) = ϑ(hp+1).
Moreover if f is linear in z, then the assumption p ≤ 2q can be relaxed to p ≤ 2q + 1.



Consistency of a class of RK methods for index-2 DAEs 187

2. Conditions B(p) and C(q) with p ≥ q, imply that δzh(x0) = ϑ(hq).

Observe that this is precisely Theorem 5.1 in [9].

3.3. Extension of Theorem 3

Conditions A1(s) and A2(s
′) make no sense if the coefficient matrixA is singular, but they can

be imposed to the ε-method and take the limit when ε tends to zero. We give the following
definition.

Definition 1. We will say that the RK method (2) satisfies the condition Ā1(s) if s is the greatest
integer such that

Ā1(s) : b̄tĀ−1c̄k = 1 k = 1, . . . , s

holds. We will say that the RK method (2) satisfies the condition Ā2(s
′) if s′ is the greatest

integer such that

Ā2(s
′) : b̄tĀ−1ē = −b̄tĀ−2a + b̄tĀ−2c̄ k = 1

b̄tĀ−2c̄k = k k = 2, . . . , s′

holds.

This definition is justified by the following result whose proof is straightforward.

Proposition 6. If A1,ε(s) and A2,ε(s
′) denote respectively the conditions

A1,ε(s) : lim
ε→0

(
btA−1

ε c k
ε − 1
)

= 0 , k = 1, . . . , s

A2,ε(s
′) : lim

ε→0

(
btA−1

ε e− btA−2
ε cε

)
= 0 k = 1

lim
ε→0

(
btA−2

ε ck
ε − k
)

= 0 , k = 2, . . . , s′

for the ε-method (12), then

1. The method (2) satisfies Ā1(s) if and only if the ε-method satisfies A1,ε(s).

2. The method (2) satisfies Ā2(s
′) if and only if the ε-method satisfies A2,ε(s

′).

Applying now Theorem 3 to the ε-method and taking the limit when ε tends to zero, we
obtain the following result.

Theorem 7. Consider a Runge-Kutta method of the form (2). If the conditions B(p), C(q),
D(η) and Ā1(s) hold, with q ≤ p ≤ min{2q, q+2}, p ≤ q+η+1 and p ≤ s+1. Then δyh(x0) =
ϑ(hp) and P (x0)δyh(x0) = ϑ(hp+1). Moreover if f is linear in z, then the assumption p ≤ 2q
can be relaxed to p ≤ 2q + 1.

If the coefficients of a Runge-Kutta method of the form (2) satisfy B(q), C(q) and Ā2(q+1),
then δzh(x0) = ϑ(hq+1).
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Example 3. We consider again the method (9). For any c3, the method satisfies B(3), C(2),
Ā1(∞) and Ā2(2). Therefore for any c3 we get δyh(x0) = ϑ(h3), P (x0)δyh(x0) = ϑ(h4) and
δzh(x0) = ϑ(h2). Condition Ā2(3) gives us the value c3 = 1.153799789, and hence for this
value δzh(x0) = ϑ(h3). �
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