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GENERALIZED POLARIZATION ALGEBRA

J. J. Gil, J. M. Correas, P. A. Melero, C. Ferreira

Abstract. A new model for the mathematical representation of polarimetric properties
of light and optical systems is presented. The polarimetric states are characterized by
means of complex correlation matrices “coherency matrices” which contain all the physical
measurable information. The physical magnitudes arise as the coefficients of the expansion
of the coherency matrix in a set of hermitic trace-orthogonal matrices constituted by the
generators of the SU(n) group and the n × n identity matrix. The cases of light (n =
2, n = 3) and optical systems (n = 4) are analyzed on the basis of a unified model
which is presented in a generic formulation that can be also applied to other n-dimensional
phenomena. A global index of purity is defined as a non-dimensional measure of the
statistical polarimetric mixture of pure physical states.
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§1. 2D Polarization Matrix

As usual in polarization optics, when a uniform light beam maintains fixed its propagation
direction, the evolution of its two transversal field components provides the corresponding
state of polarization. The polarization matrix P (or coherency matrix) [8, 1, 3] of a light beam
contains all the measurable information about its state of polarization (including intensity).
This Hermitian matrix is defined as

P = 〈ε(t)⊗ ε+(t)〉, (1)

where

• ε is the Jones vector whose two components are the analytic signal of the wavefield.

• Brackets indicates time averaging: 〈X〉 = lim
T→∞

1

T

∫ T

0

X(t)dt

• ⊗ stands for Kronecker product.

• ε+ is the transposed conjugated vector of ε.
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A proper invariant and non-dimensional magnitude for describing the stability of the polar-
ization ellipse is the “degree of polarization”, which can be expressed as [4]

G(2) =

(
2Tr(P)2

(TrP)2
− 1

)1/2

. (2)

P can be expressed as a linear expansion, with real coefficients, on the basis constituted by
the set composed of the three Pauli matrices and the identity matrix:

P =
1

2

3∑
i=0

siσi, si = Tr(Pσi), i = 0, 1, 2, 3 (3)

σ0 =

(
1 0
0 1

)
, σ1 =

(
1 0
0 −1

)
, σ2 =

(
0 1
1 0

)
, σ3 =

(
0 −i
i 0

)
. (4)

The well known set of four real “Stokes parameters” si determines completely the state of
polarization.

§2. 3D Polarization Matrix

Some authors have previously dealt with the general description of states of polarization where
the three components of the wave field should be considered [7, 2] so that generalized polar-
ization matrix (or “coherency matrix”) is defined by

R = 〈ε(t)⊗ ε+(t)〉, (5)

where ε represents the generalized Jones vector, constituted by the three analytic signals corre-
sponding to the three wavefield components.

Nevertheless, for an appropriate treatment of this subject it is necessary to consider some
recent works [6] where the set of Hermitian, trace-orthogonal matrices constituted by the ad-
equately normalized Gell-Mann matrices and the identity matrix, is used as a basis for the
expansion of R.

Ω0 =

⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠ , Ω1 =

√
3

2

⎛⎝ 0 1 0
1 0 0
0 0 0

⎞⎠ , Ω2 =

√
3

2

⎛⎝ 0 0 1
0 0 0
1 0 0

⎞⎠ ,

Ω3 =

√
3

2

⎛⎝ 0 −i 0
i 0 0
0 0 0

⎞⎠ , Ω4 =
1√
2

⎛⎝ 1 0 0
0 1 0
0 0 −2

⎞⎠ , Ω5 =

√
3

2

⎛⎝ 0 0 0
0 0 1
0 1 0

⎞⎠ , (6)

Ω6 =

√
3

2

⎛⎝ 0 0 −i
0 0 0
i 0 0

⎞⎠ , Ω7 =

√
3

2

⎛⎝ 0 0 0
0 0 −i
0 i 0

⎞⎠ , Ω8 =

√
3

2

⎛⎝ 1 0 0
0 −1 0
0 0 0

⎞⎠ .

Then,

R =
1

3

8∑
i,j=0

qjΩi; qi = Tr(RΩi), i = 0, 1, . . . , 9, (7)
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where the nine coefficients qi can be properly called the “generalized Stokes parameters” or the
“3D Stokes parameters”.

Now, the 3D “degree of polarization” or “degree of purity” [6] can be defined as

G(3) =

[
1

2

(
3Tr(R2)

(TrR)2
− 1

)]1/2

. (8)

This invariant, non-dimensional parameter is restricted to 0 ≤ G(3) ≤ 1, so that G(3) = 1
corresponds to the case of R has only one non-null eigenvalue (total polarimetric purity and
total correlation between the field variables), whereas for G(3) = 0 the three eigenvalues of R
are equal (equiprobable mixture of states of polarization, and null correlation between the field
variables).

For the 2D case, G(2) appears as a relative difference between the two eigenvalues of P

G(2) =
λ1 − λ2

TrP
. (9)

For the 3D case, the statistics that underlies the state of polarization is more complex so
that several relative balances can be considered in order to describe “structure of purity" of
the corresponding state of polarization. Then, in addition to G(3), which provides a global
measurement of the polarimetric purity, two new “indices of purity” can be defined from the
eigenvalues of R.

P1 =
λ1 − λ2

TrR
, P2 =

λ1 + λ2 − 2λ3

TrR
. (10)

These indices are restricted to the following limits

0 ≤ P1 ≤ P2 ≤ 1. (11)

>From the above equations, the following quadratic relation between the global degree of
purity G(3) and the two indices of purity P1 and P2 can be obtained

G(3) =
1

2

(
3P 2

1 + P 2
2

)1/2
. (12)

Then, the two indices of purity provide complete information about the polarimetric purity
of the corresponding polarization state. This enhanced description based on invariant, non-
dimensional parameters, has special physical significance.

The physically accessible region in the space P1, P2 is the following:

§3. 4D Coherency matrix associated with a Mueller matrix

The Stokes-Mueller algebra allows representing, in a general way, the transformation of the
state of polarization of a light beam that interacts with an optical medium. The fundamental
equation that relates the incident and emerging Stokes vectors with the Mueller matrix of the
medium is the following

s′ = Ms. (13)
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Figure 1: Region for the indices of purity

All the information about the polarimetric behavior of the medium is contained in its cor-
responding Mueller matrix M, and it is possible to define a positive semi-definite Hermitian
matrix H associated with M [4, 5], hence containing the same information

H =
1

4

3∑
k,l=0

mklEkl, (14)

where mkl are the Mueller matrix elements and Ekl are the 16 Dirac matrices defined as

Ekl = σk ⊗ σl, k, l = 0, 1, 2, 3, (15)

so that mkl can be expressed as
mkl = Tr(EklH). (16)

It is clear that the relation between the “coherency matrix” H and the Mueller matrix M
is analogous to the relation between the coherency matrix of the wave and its corresponding
Stokes parameters (1D or 3D). In fact we can see that the relevant polarimetric magnitudes are
given by the coherency matrices (positive-semidefinite Hermitian matrices):

• Polarization matrix (2D) P. The coefficients of its expansion in the basis of trace-
orthogonal Hermitian matrices σi, given by the generators of the group. SU(2) and the
identity matrix, are the measurable magnitudes (2D Stokes parameters). The mentioned
basis is constituted by the three Pauli matrices and the identity matrix.

• Polarization matrix (3D) R. The coefficients of its expansion in the basis of trace-
orthogonal Hermitian matrices Ωi, given by the generators of the group. SU(3) and the
identity matrix, are the measurable magnitudes (3D Stokes parameters). The mentioned
basis is constituted by the eight Gell-Mann matrices and the identity matrix.

• Coherency matrix of the optical medium (4D) H. The coefficients of its expansion in the
basis of trace-orthogonal Hermitian matrices Ekl, given by the generators of the group.
SU(4) and the identity matrix, are the measurable magnitudes (Mueller matrix elements).
The mentioned basis is constituted by the sixteen Dirac matrices including the identity
matrix.
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The inspection of the expressions of the eigenvalues of H obtained by algebraic compu-
tation shows that it is possible to write them in terms of three non-negative non-dimensional
parameters

λ0 =
1

4
TrH(1 + 2P1 + P2), λ1 =

1

4
TrH(1− 2P1 + P2), λ2 = (17)

1

4
TrH(1 + 2P3 − P2), λ3 =

1

4
TrH(1− 2P3 − P2),

where the new parameters P1, P2, P3 are defined as

P1 =
λ0 − λ1

TrH
, P2 =

(λ0 + λ1)− (λ2 + λ3)

TrH
, P3 =

λ2 − λ3

TrH
. (18)

We see that these “Purity Indices” are expressed in a similar way to the degree of polariza-
tion of a light beam. In fact:

• P1 is a non-dimensional measure of the differential weight between the two more signif-
icant pure components of the system,

• P2 is a non-dimensional measure of the combined weight of the two more significant pure
components relative to the combined weight of the two less significant pure components
of the system, and

• P3 is a non-dimensional measure of the differential weight between the two less signifi-
cant pure components.

Now we can consider the restrictive relations between the different indices of purity and the
limits of their values.

By applying the starting conditions for the eigenvalues, i. e. λ0 ≥ λ1 ≥ λ2 ≥ λ3 ≥ 0, we
find that the indices of purity are restricted by the following conditions

0 ≤ P1, 0 ≤ P3, P1 + P3 ≤ P2, P2 + 2P3 ≤ 1. (19)

Figure 2 shows a geometrical synthesized view of the restrictions on the values of the purity
indices.

Let us now consider the “Degree of Purity” G(4) defined as

G(4) =

[
1

3

(
4Tr(H2)

(TrH)2

)
− 1

]1/2

. (20)

This non-dimensional parameter is restricted to the interval 0 ≤ G(4) ≤ 1, where the
minimum corresponds to an ideal total depolarizer and the maximum to a pure system (i. e.
to a deterministic system which preserves the degree of polarization when the incident light is
fully polarized).

The Degree of Purity is related with the three indices of purity by the following quadratic
relation

G(4) =
1√
3

(
2P 2

1 + P 2
2 + 2P 2

3

)1/2
. (21)

Pure systems are characterized by G(4) = P1 = P2 = 1, P3 = 0. On the other hand,
equiprobable mixtures of four (or more) incoherent elements (i. e., total depolarizers whose
Mueller matrix elements are zero except m00) correspond to G(4) = P1 = P2 = P3 = 0.

The degree of purity provides a global measure of the purity of the system, whereas a
detailed analysis requires consideration of the three indices of purity.
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Figure 2: Region for the indices of purity.
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