ANALYTICAL TECHNIQUES TO SOLVE NUMERICALLY LINEAR INITIAL-VALUE PROBLEMS

D. Gámez, A.I. Garralda Guillem and M. Ruiz Galán

Abstract

The authors provide a numerical method in order to approximate the solution of a linear initial-value problem, by means of von Neumann series and Faber-Schauder systems.

Keywords: Faber-Schauder systems, von Neumann series, linear initial value-problems, numerical methods
AMS classification: 65L05, 34A50, 46B15

§1. Preliminaries

In this work some results are discussed in order to approximate the solution of the following initial-value problem: given $x_{0} \in \mathbb{R}^{n}, a \in C\left([\alpha, \alpha+\beta], \mathcal{M}_{n}(\mathbb{R})\right)\left(\mathcal{M}_{n}(\mathbb{R})\right.$ is the set of all $n \times n$ real matrices) and $b \in C\left([\alpha, \alpha+\beta], \mathbb{R}^{n}\right)$, find $x \in C^{1}\left([\alpha, \alpha+\beta], \mathbb{R}^{n}\right)$ such that

$$
\left\{\begin{array}{l}
x^{\prime}(t)=a(t) x(t)+b(t), \quad t \in[\alpha, \alpha+\beta] \tag{0.1}\\
x(\alpha)=x_{0}
\end{array}\right.
$$

For the sake of simplicity we shall assume that $\alpha=0$ and $\beta=1$.
It is an elementary and well-known fact that the unique solution u of the initial-value problem above is characterised by the equality

$$
\begin{equation*}
u=f+L u, \tag{0.2}
\end{equation*}
$$

where

$$
f:=x_{0}+\int_{0}^{t} b(s) d s
$$

and L is the bounded and linear operator defined on the Banach space $C\left([0,1], \mathbb{R}^{n}\right)$, endowed with its usual sup-sup norm $\left(\|x\|_{\infty}:=\sup _{t \in[0,1]}\|x(t)\|_{\infty}, \quad\left(x \in C\left([0,1], \mathbb{R}^{n}\right)\right)\right)$ by

$$
\left.L x(t):=\int_{0}^{t} a(s) x(s) d s, \quad\left(x \in C\left([0,1], \mathbb{R}^{n}\right)\right), 0 \leq t \leq 1\right)
$$

Form now on, we shall understand f and L to be such function and operator. On the other hand, since operator L satisfies that for all $\left.x \in C\left([0,1], \mathbb{R}^{n}\right)\right)$ and for all $m \geq 1$

$$
\begin{equation*}
\left\|L^{m} x\right\|_{\infty} \leq \frac{1}{m!} M^{m}\|x\|_{\infty} \tag{0.3}
\end{equation*}
$$

where $M:=\max _{0 \leq t \leq 1}\|a(t)\|_{\infty}$, we have that the series $\sum_{m \geq 0} L^{m}$ converges. Then, it follows from the geometric series theorem [2] that operator $I-L$ is one-to-one and onto and its inverse operator $(I-L)^{-1}$ is bounded and linear. In fact

$$
(I-L)^{-1}=\sum_{m \geq 0} L^{m}
$$

the so-called von Neumann series of L. Hence, in view of (0.2) we deduce that the unique solution of problem (0.1) is given by

$$
\begin{equation*}
u=\sum_{m \geq 0} L^{m} f \tag{0.4}
\end{equation*}
$$

Hence, letting

$$
s_{0}=f
$$

and for $m \geq 1$

$$
s_{m}=\sum_{k=0}^{m} L^{k} f=f+L s_{m-1}
$$

then the sequence $\left\{s_{m}\right\}_{m \geq 0}$ converges uniformly to u. Moreover, we derive from (0.3) and (0.4) that

$$
\begin{equation*}
\left\|u-s_{m}\right\|_{\infty} \leq\|f\|_{\infty} \sum_{k \geq m+1} \frac{M^{k}}{k!} \tag{0.5}
\end{equation*}
$$

In order to obtain the sequence $\left\{s_{m}\right\}_{m \geq 0}$ we shall make of the usual Faber-Schauder systems in the space $C([0,1])$.

Let us recall ([3]) that a sequence $\left\{x_{j}\right\}_{j \geq 1}$ in a Banach space X is said to be a Schauder basis provided that for all $x \in X$ there exists a unique sequence of scalars $\left\{\lambda_{j}\right\}_{j \geq 1}$ in such a way that $x=\sum_{j \geq 1} \lambda_{j} x_{j}$. The $j^{\text {th }}$ (continuous and linear) biorthogonal functional x_{j}^{*} is defined at such an x as $x_{j}^{*}(x)=\lambda_{j}$, and the $j^{\text {th }}$ (continuous and linear) projection Q_{j} by $Q_{j}(x)=\sum_{i=1}^{j} \lambda_{i} x_{i}$.

Now we introduce the classical Schauder basis for the space $C([0,1])$, endowed with its usual sup-norm, the so-called Faber-Schauder system. Suppose that $\left\{t_{j}\right\}_{j \geq 1}$ is a dense sequence of distinct points in $[0,1]$ such that $t_{1}=0$ and $t_{2}=1$. The classical Faber-Schauder system $\left\{\Gamma_{j}\right\}_{j \geq 1}$ (associated with $\left\{t_{j}\right\}_{j \geq 1}$) for the Banach space $C([0,1])$ is defined as follows:

$$
\Gamma_{1}(t)=1, \quad(0 \leq t \leq 1)
$$

and for all $j>1, \Gamma_{j}$ is the piecewise linear continuous function with nodes at t_{1}, \ldots, t_{j}, such that

$$
\text { for all } 1 \leq i<j, \quad \Gamma_{j}\left(t_{i}\right)=0
$$

while

$$
\Gamma_{j}\left(t_{j}\right)=1
$$

In what follows, $\left\{\Gamma_{j}\right\}_{j \geq 1}$ will denote such basis and $\left\{\Gamma_{j}^{*}\right\}_{j \geq 1}$ and $\left\{Q_{j}\right\}_{j \geq 1}$, respectively, the associated sequences of biorthogonal functionals and projections. In the next statement we collect some basic elementary facts that will play a fundamental role in our results. For a proof, see [3] or [4].

Theorem 1. Let $x \in C([0,1])$. Then

$$
\Gamma_{1}^{*}(x)=x\left(t_{1}\right)
$$

and for all $j>1$,

$$
\Gamma_{j}^{*}(x)=x\left(t_{j}\right)-\sum_{i=1}^{j-1} \Gamma_{i}^{*}(x) \Gamma_{i}\left(t_{j}\right)
$$

In particular, for all $j \geq 1$ and for all $i \leq j$,

$$
\begin{equation*}
\left(Q_{j} x\right)\left(t_{i}\right)=x\left(t_{i}\right) . \tag{1.1}
\end{equation*}
$$

§2. The results

Let us point out that it is possible to obtain the image under operator L of any continuous function in terms of certain sequences of scalars, sequences which are obtained just by evaluating some functions at adequate points. More precisely; we shall consider the sup-sup norm on the space $C\left([0,1], \mathcal{M}_{n}(\mathbb{R})\right)$:

$$
\|a\|_{\infty}:=\sup _{t \in[0,1]}\|a(t)\|_{\infty}, \quad\left(a \in C\left([0,1], \mathcal{M}_{n}(\mathbb{R})\right)\right) .
$$

Let $n \geq 1$ and assume that $a=\left(a_{i j}\right)_{i, j=1, \ldots n} \in C\left([0,1], \mathcal{M}_{n}(\mathbb{R})\right), b=\left(b_{j}\right)_{j=1, \ldots, n} \in C\left([0,1], \mathbb{R}^{n}\right)$ and $x_{0} \in \mathbb{R}^{n}$. Given $1 \leq j, k \leq n$ let $\left\{a_{j k}^{(i)}\right\}_{i \geq 1}$ and $\left\{b_{j}^{(i)}\right\}_{i \geq 1}$ be the sequences of scalars satisfying

$$
a_{j k}=\sum_{i \geq 1} a_{j k}^{(i)} \Gamma_{i} \quad \text { and } \quad b_{j}=\sum_{i \geq 1} b_{j}^{(i)} \Gamma_{i} .
$$

Then, for all $x=\left(x_{j}\right)_{j=1, \ldots, n} \in C\left([0,1], \mathbb{R}^{n}\right)$ and for all $t \in[0,1]$ it is not difficult to obtain, integrating, that

$$
f(t)+(L x)(t)=x_{0}+\left(\sum_{i \geq 1} c_{j}^{(i)} \int_{\alpha}^{t} \Gamma_{i}(s) d s\right)_{j=1, \ldots, n}
$$

where for $j=1, \ldots, n$,

$$
\left\{\begin{array}{l}
c_{j}^{(1)}=b_{j}^{(1)}+\sum_{k=1}^{n} a_{j k}^{(1)} x_{k}\left(t_{1}\right) \\
c_{j}^{(i)}=\sum_{l=1}^{i}\left(b_{j}^{(l)}+\sum_{k=1}^{n} a_{j k}^{(l)} x_{k}\left(t_{i}\right)\right) \Gamma_{k}\left(t_{i}\right)-\sum_{l=1}^{i-1} c_{j}^{(l)} \Gamma_{l}\left(t_{i}\right), \quad \text { if } i \geq 2
\end{array} .\right.
$$

In the following result we replace the sequence $\left\{s_{m}\right\}_{m \geq 0}$ by another $\left\{y_{m}\right\}_{m \geq 0}$ which can be calculated explicitly:

Theorem 2. Let $n \geq 1$ and suppose that $a=\left(a_{i j}\right)_{i, j=1, \ldots n} \in C\left([0,1], \mathcal{M}_{n}(\mathbb{R})\right), b=\left(b_{j}\right)_{j=1, \ldots, n} \in$ $C\left([0,1], \mathbb{R}^{n}\right)$ and $x_{0} \in \mathbb{R}^{n}$. Let $m \geq 1$ and $n_{1}, \ldots, n_{m} \geq 1$. Consider the continuous function

$$
y_{0}(t):=x_{0}(t), \quad(t \in[0,1])
$$

and for $r=1, \ldots, m$ the continuous functions

$$
\varphi_{r-1}(t):=a(t) y_{r-1}(t)+b(t), \quad(t \in[0,1]),
$$

and

$$
y_{r}(t):=x_{0}+\int_{0}^{t}\left(Q_{n_{r}}\left(\varphi_{r-1}(s)\right)_{k}\right)_{k=1, \ldots, n} d s, \quad(t \in[0,1])
$$

Assume in addition that certain positive numbers $\varepsilon_{1}, \ldots, \varepsilon_{m}$ satisfy

$$
\left\|f+L y_{r-1}-y_{r}\right\|_{\infty}<\varepsilon_{r}
$$

where L is the linear integral operator on $C\left([0,1], \mathbb{R}^{n}\right)$ associated with the initial-value problem (0.1) Then, if u is the solution of such problem, we have that

$$
\left\|u-y_{m}\right\|_{\infty} \leq\|f\|_{\infty} \sum_{r \geq m} \frac{M^{r}}{r!}+\left\|x_{0}\right\|_{\infty} \frac{M^{m}}{m!}+\sum_{r=1}^{m} \varepsilon_{r} \frac{M^{m-r}}{(m-r)!},
$$

where $M=\max _{0 \leq t \leq 1}\|a(t)\|_{\infty}$.
Proof. Since

$$
\begin{equation*}
\left\|u-y_{m}\right\|_{\infty} \leq\left\|u-\left(s_{m-1}+L^{m} x_{0}\right)\right\|_{\infty}+\left\|y_{m}-\left(s_{m-1}+L^{m} x_{0}\right)\right\|_{\infty} \tag{2.1}
\end{equation*}
$$

we shall separately obtain upper bounds for both terms on the left hand side in (2.1). On the one hand, inequalities (0.5) and (0.3) give

$$
\begin{equation*}
\left\|u-\left(s_{m-1}+L^{m} x_{0}\right)\right\|_{\infty} \leq\left\|u-s_{m-1}\right\|_{\infty}+\left\|L^{m} x_{0}\right\|_{\infty} \leq\|f\|_{\infty} \sum_{r \geq m} \frac{M^{r}}{r!}+\left\|x_{0}\right\|_{\infty} \frac{M^{m}}{m!} \tag{2.2}
\end{equation*}
$$

On the other hand, the hypothesis on the ε_{r} 's and inequality (0.3) give

$$
\begin{gather*}
\left\|y_{m}-s_{m-1}-L^{m} x_{0}\right\|_{\infty}=\left\|y_{m}-f-L f-L^{2} f-\ldots-L^{m-1} f-L^{m} y_{0}\right\|_{\infty} \leq \\
\left\|y_{m}-f-L y_{m-1}\right\|_{\infty}+\left\|L y_{m-1}-L f-L^{2} y_{m-2}\right\|_{\infty}+ \\
\left\|L^{2} y_{m-2}-L^{2} f-L^{3} y_{m-3}\right\|_{\infty}+\cdots+ \\
\left\|L^{m-1} y_{1}-L^{m-1} f-L^{m} y_{0}\right\|_{\infty} \leq \\
\varepsilon_{m}+\|L\| \varepsilon_{m-1}+\left\|L^{2}\right\| \varepsilon_{m-2}+\cdots+\left\|L^{m-1}\right\| \varepsilon_{1} \leq \\
\sum_{r=1}^{m} \varepsilon_{r} \frac{M^{m-r}}{(m-r)!} . \tag{2.3}
\end{gather*}
$$

Finally, the proof is complete in view of (2.1), (2.2) and (2.3).

Note that given $\varepsilon_{1}, \ldots, \varepsilon_{m}>0$ we can find positive integers n_{1}, \ldots, n_{m} such that $\| f+$ $L y_{r-1}-y_{r} \|_{\infty}<\varepsilon_{r}$, since for all $x \in C([0,1]), \lim _{j \geq 1}\left\|Q_{j} x-x\right\|_{\infty}=0$. However, if we wish to find the integers m, n_{1}, \ldots, n_{m} from the positive numbers $\varepsilon_{1}, \ldots, \varepsilon_{m}$, we can use this easy and well-known consequence of the mean value theorem and the interpolating property (1.1) of the basis for $C([0,1])$: suppose that $x \in C^{1}([0,1])$ (in fact, we can assume that x is a continuous and C^{1} class function on $[0,1]$, except perhaps for a finite number of points), $j \geq 2$ and

$$
h:=\max _{i=2, \ldots, j}\left(s_{i}-s_{i-1}\right),
$$

where $\left\{s_{1}=0<s_{2}<\cdots<s_{j-1}<s_{j}=1\right\}$ is the set $\left\{t_{1}, \ldots, t_{j}\right\}$ ordered in a increasing way. Then

$$
\begin{equation*}
\left\|x-Q_{j} x\right\|_{\infty} \leq 2\left\|x^{\prime}\right\|_{\infty} h \tag{2.4}
\end{equation*}
$$

If one assumes in the initial-value problem that a and b are functions of C^{1} class on $[0,1]$ then the norm appearing in Theorem 2, $\left\|f+L y_{r-1}-y_{r}\right\|_{\infty}$ can be estimated as follows: $\| f+$ $L y_{r-1}-y_{r}\left\|_{\infty} \leq\right\| \varphi_{r}-\left(Q_{n_{r}}\left(\varphi_{r}\right)_{k}\right)_{k=1, \ldots, n} \|_{\infty}$ and then above applies.
Remark 1. The Faber-Schauder system has also been used in [1] for solving numerically the linear Volterra integro-differential equation.
Remark 2. Although our numerical method works for any Faber-Schauder system in the Banach space $C([0,1])$, we have chosen the classical one because the biorthogonal functionals and the projections associated have an easy expression.

§3. A numerical example

Finally we exhibit an example which shows the behaviour of our results. To this end, we fix the data's initial-value problem: $x_{0} \in \mathbb{R}^{n}, a=\left(a_{i j}\right)_{i j=1, \ldots, n} \in C^{1}\left([0,1], \mathcal{M}_{n}(\mathbb{R})\right)$ and $b=\left(b_{j}\right)_{j=1, \ldots, n} \in C^{1}\left([0,1], \mathbb{R}^{n}\right)$. We choose an $n \in \mathbb{N}$ with $n=2^{k}+1, k \in \mathbb{N}$, and thus

$$
h=\max _{2 \leq i \leq n}\left(s_{i}-s_{i-1}\right)=\frac{1}{2^{k}} .
$$

Then we calculate the sequences of coefficients $\left\{a_{j k}^{(i)}\right\}_{i=1}^{n}$ and $\left\{b_{j}^{(i)}\right\}_{i=1}^{n}$ and obtain recursively the functions y_{r} in Theorem 2, taking $n_{1}=\cdots=n_{r}=n$. We determine the errors

$$
E_{n r}=\max _{i}\left|y_{r}\left(s_{i}\right)-u\left(s_{i}\right)\right|,
$$

where u is the exact solution. We have considered the approximation of the exact solution y_{m} in such a way that

$$
\left|\frac{E_{n m}}{E_{n m+1}}\right|<1+10^{-2} .
$$

Let us point out that we do not need to solve systems of algebraical linear equations collocation methods- or to use quadrature formulas.

Example 1. The function $y(t)=\arctan t$ is the analytical solution of the second order equation

$$
\left\{\begin{array}{l}
y^{\prime \prime}(t)+\frac{2 t}{1+t^{2}} y(t)=0 \\
y(0)=0 \\
y^{\prime}(0)=1
\end{array} .\right.
$$

If one associates, in the usual way, this problem with an initial-value problem in the form (0.1) and applies the above results, he obtains the following table. In its columns we give the absolute errors $E_{n m}$ in nine representative points of the approximations y_{m}, obtained with different values of n.

	$(n=9, m=4)$	$(n=17, m=6)$	$(n=33, m=6)$
0	0	0	0
0.125	3.01×10^{-4}	7.61×10^{-5}	1.90×10^{-5}
0.250	4.98×10^{-4}	1.25×10^{-4}	3.14×10^{-5}
0.375	5.30×10^{-4}	1.33×10^{-4}	3.33×10^{-5}
0.500	4.05×10^{-4}	9.89×10^{-5}	2.47×10^{-5}
0.625	1.91×10^{-4}	3.38×10^{-5}	8.55×10^{-6}
0.750	1.01×10^{-5}	4.77×10^{-5}	1.13×10^{-5}
0.875	3.94×10^{-5}	1.31×10^{-4}	3.02×10^{-5}
1	5.32×10^{-4}	2.04×10^{-4}	4.05×10^{-5}

References

[1] Berenguer, M.I., Fortes, M.A., Garralda Guillem, A.I. and Ruiz Galán, M. Linear integro-differential equation and Schauder bases, to appear in Applied Mathematics and Computation.
[2] Atkinson, K. and Han, W. Theorical numerical analysis. TAM 39, Springer, New York, 2001.
[3] Megginson, R.E. An introduction to Banach space theory. Springer, New York, 1998.
[4] Semadeni, Z. Schauder bases in Banach spaces of continuous functions. Springer-Verlag, Berlin, 1982.

Domingo Gámez Domingo, Ana Isabel Garralda Guillem and Manuel Ruiz Galán E.U. Arquitectura Técnica

Departamento de Matemática Aplicada c/ Severo Ochoa s/n 18071 Granada (Spain)
domingo@ugr.es, agarral@ugr.es and mruizg@ugr.es

