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§1. Introduction

1.1. Background, Overview and General Facts

A wealth of classical and modern–approach literature, providing the interested reader with
information and details concerning diverse mathematical, physical and astronomical aspects of
the three–body problem, might be furnished here. Nevertheless, for the purposes of the present
study, the list of treatises and journal articles at the end of the paper (and, of course, references
therein) should represent helpful reading materials on the subject, even at an introductory level.

The formulation of the so–called (gravitational) Circular (resp. Elliptic) Restricted Three–
Body Problem, CRTBP (resp. ERTBP) for short, can be stated as follows:

Two point masses, called the “primaries”, orbit one another in circular (resp. elliptic) Kep-
lerian motion, each influencing, but not influenced by, a third body of (negligible) infinitesimal
mass. The motion of this third (infinitesimal) particle under the gravitational influence of the
two other finite masses must be studied.

For our purposes, the ERTBP focusses on the motion of an infinitesimal body attracted
–according to the Newtonian gravitational interaction law– by two finite masses revolving in
respective ellipses about their centre of mass: accordingly, the relative orbit of two bodies
will be an ellipse of eccentricity e, and the third body –of negligible mass– moves in their
gravitational attraction field.

It is a well–known fact that there exist five relative equilibrium solutions, or libration points,
where the gravitational and centrifugal forces balance each other: three collinear, and two
triangular, located in the plane of the motion of the primaries at the vertices of the equilateral
triangles which have the primaries as the other vertices.
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Lagrange had already shown that three bodies placed at the vertices of an equilateral trian-
gle can be given such initial velocities that they will retain permanently the same configuration:
the well–known Lagrangian equilateral solutions of the general problem of three bodies.

Introducing elliptic orbits for the primaries generalizes the original CRTBP, and improves
its applicability, while some outstanding and useful properties of the circular model still hold
true or can be adapted to the elliptic case. In particular, possible positions of equilibrium occur
when the three bodies form equilateral triangles. An important instance for application of
this model is provided by the problem of motion of the Trojan asteroids around the triangular
Lagrangian point L4: according to this simplified model, the asteroids are only influenced
by the gravitational forces of the Sun and Jupiter, and the orbit of Jupiter around the Sun is
supposed to be a fixed ellipse.

Although the CRTBP is not integrable, there exists a first integral of the system, the so–
called Jacobi integral: in a rotating reference frame this problem has the property that its
Hamiltonian does not depend explicitly on the time; therefore the problem possesses an in-
tegral (the Jacobi integral). In addition to the Jacobian integral no other analytical integrals
exist with global validity. The existence of this first integral helps to establish the regions of
possible motions for given sets of initial conditions, to regularize the problem or to analyse
the stability of motions with the help of the method of the Poincaré surface of section in the
two–dimensional case.

On the other hand, as far as the ERTBP is concerned, it does not admit this integral of the
circular problem, at least not in its usual sense. In the elliptic problem, the energy along any
orbit is a time–dependent quantity.

However the equations of motion of the small (infinitesimal) body can be advantageously
formulated in a rotating pulsating coordinate system: given that the orbits of the primaries are
elliptic, the rotating reference frame –in order to maintain the primaries in fixed positions–
must be a system which rotates uniformly and with axes which expand and shrink.

Such a coordinate system is defined as follows: the x–axis rotates together with the pri-
maries; the y–axis is obtained by a direct π/2 rotation of the x–axis. The independent variable
can be chosen so as to be the true anomaly f of the Keplerian ellipse (with semi-major axis a
and numerical eccentricity e) described by the smaller primary, and the instantaneous (variable)
distance of the primaries, namely

r(t) =
a(1− e2)

1 + e cos f
, (1)

can be taken as the unit of length. Accordingly, in this coordinate system, and with this
choice of variables and units, the problem is characterized by a non–conservative Lagrangian
or Hamiltonian function: the independent variable is explicitly contained in that function. A
consequence of this fact is, once again, the non–existence of the Jacobi integral. The elliptic
problem is thus fundamentally different from the circular restricted problem: it is not conser-
vative.

To sum up: The two–dimensional ERTBP is an important instance of a non–autonomous
non–integrable dynamical system with two degrees of freedom.

On the other hand, and in spite of its intrinsic difficulty, certain adequate changes of vari-
ables bring the analytical form of the equations for the orbit of the third body into formulae
which are similar to those governing the CRTBP, and then important conclusions can be drawn
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from analogies inspired by this reduction into a situation that has been (and is still) studied in
great detail.

No exact, complete and general solution to this problem can be obtained in finite terms, but
this mathematical inconvenience is usually overcome –or, at least, softened– by concentrating
on the thorough investigation of significant features and properties of certain special cases
of the problem (established under severe restrictions and simplifying hypotheses concerning
the mathematical model), but also on the construction of analytical expressions and formulae
providing approximate particular solutions to the system at issue.

1.2. Aims and Scope of the Paper

An analytical treatment of the small–amplitude orbital motion of a particle of negligible mass
about the libration points in the planar ERTBP constitutes the main purpose of the study.

Small motions close to the equilibrium points (more specifically, infinitesimal deviations
from the libration centres) are considered: the objective of this work is to sketch a procedure to
produce explicit analytical expressions for the small–amplitude motion of the infinitesimal mass
about the equilibrium points in the ERTBP. To handle this dynamical problem, it is formulated
and approached within the framework of Hamiltonian Mechanics.

The (approximate) integration of the model problem is undertaken by means of a pertur-
bation technique based on Lie series developments, which leads to an approximate solution to
the differential system of canonical equations of motion derived from the chosen Hamiltonian
function (expanded in powers of the numerical eccentricity e of the elliptic orbit of the two
primaries, which plays the role of the small parameter of the perturbation).

Concerning the fundamental guidelines, approach and solution method, the essential “intel-
lectual roots” of this research can be found in the articles by D. Şelaru & C. Cucu–Dumitrescu
([9], [10]), and Delva [3].

Şelaru and Cucu–Dumitrescu performed an analytical investigation concerning the con-
struction of asymptotic perturbative approximations for small–amplitude motions of the (in-
finitesimal) third point mass in the neighbourhood of a Lagrangian equilateral libration posi-
tion in the planar, elliptic restricted problem of three bodies. To this end, after a sequence of
canonical transformations introducing successive adequate sets of phase variables, they formu-
lated the Hamiltonian governing the motion of the negligible–mass body, using the eccentric
anomaly of the primaries’ elliptic Keplerian orbit as the independent variable, and then studied
the linearized system of differential equations of motion as obtained from the quadratic part
of the Taylor expansion (with respect to the canonical variables) of that Hamiltonian around a
Lagrange solution. At a later stage, in [9] they developed their theory and calculations of an
asymptotical solution up to the first order in the orbital eccentricity of the primaries taken as
the perturbation parameter: terms up to the first power of the eccentricity of the relative orbit
of the primaries were retained both in the Hamiltonian and in the approximate solution. An
extension of these considerations to a similar second–order theory was presented in [10].

In the present paper we re-examine their analytical treatment and amend some errors and
misapplications of certain canonical transformations. In particular, we have detected a mistake
in the Hamiltonian function taken by these authors as the starting point for their expansions
leading to the construction of the linearized system and the subsequent perturbative treatment
in terms of powers of the small parameter e. In fact [see below, Eq.(38)], a first–order term
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in e, proportional to cos E and explicitly containing a contribution of the eccentric anomaly
(which, remember, is just the independent variable in this non–autonomous dynamical system
as considered in this formulation) seems to be missing in these authors’ basic Hamiltonian.

With the necessary precautions, the analysis leading to the construction of the Hamiltonian
function and its truncated Taylor expansion (about the libration points of interest) closely fol-
lows, in principle, the considerations due to Şelaru & Cucu–Dumitrescu, according to whose
proposal the Hamiltonian for small motions in the neighbourhood of the equilibria can be es-
tablished.

On the contrary (see below), the direct approximate analytical integration of the resulting
linearized equations of motion around the equilibrium points can be undertaken according to a
Lie series formalism, using an eccentric anomaly as the independent variable. To this end, the
Hamiltonian and the canonical equation should be explicitly arranged according to ascending
powers of e, the eccentricity of the relative elliptic orbit of the two primaries.

In their approximate analytical integration of the problem, Şelaru & Cucu–Dumitrescu ([9],
[10]) applied a von Zeipel type perturbation method, which produces a near–identity canonical
transformation derived from a generating function in mixed variables (the old coordinates and
the new canonically conjugate momenta). This leads to implicit transformation equations de-
rived from a generating function in which phase variables belonging to different canonical sets
are mixed.

An advantage of our option over the von Zeipel procedure is that the differential equa-
tions of motion are treated directly, avoiding the cumbersome reckoning work required in the
determination of the von Zeipel generating function and the subsequent formation of partial
derivatives to express the implicit transformation equations and the elimination process leading
to explicit relations between the canonical sets of old and new variables.

An eccentric–like anomaly is chosen as the independent variable, in terms of which the
solution to the canonical system of differential equations of motion governing the problem can
be expanded (Delva [3] based her expansions on a true–like anomaly). The final results for
the canonical solution should be in explicit form for the coordinates and conjugate momenta as
functions of the eccentric anomaly as the independent variable.

In adapting Delva’s approach, the linear differential Lie operator for the motion of the third
(massless) body is to be obtained in terms of the canonical variables and the eccentric anomaly
of the primaries. Successive terms of the Lie series are then obtained by repeating the action
of this operator, that is, by constructing “powers” of the operator. The Lie series solution to
the canonical equations in the chosen eccentric anomaly is developed by propagating initial
conditions with the help of the operator.

Another alternative treatment of the problem might be based on judicious modifications and
adaptations of canonical perturbation methods combining ideas of averaging and Lie transform
technique (e.g., variants of the Hori [6] and Deprit [4] type procedures).

§2. Statement of the Problem and Basic Notations

We consider the problem (see, e.g. Brouwer & Clemence [2], Ch. X, §3) of motion of three
point particles, with masses m0, m1 and m2, in which the mass m2 (that of the infinitesimal
body) is negligibly small in comparison with m0 and m1 (those of the finite bodies, primary
bodies or, simply, “primaries”). In this case the motions of the finite–mass bodies are not sen-
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sibly affected by the gravitational attraction due to the infinitesimal particle: they are precisely
the Keplerian motions of the pure, unperturbed two–body problem, and can be contemplated
as completely known and given in advance. This simplification gives rise to the restricted
three–body problem, say RTBP.

In what follows, we concentrate on the problem of motion of the infinitesimal body, assum-
ing that this motion takes place in the common orbital plane of the primaries (planar RTBP),
and that their Keplerian orbits are known ellipses around their centre of mass (planar elliptic
RTBP). Consequently, the relative orbit of one of the primaries with respect to the other one is
also an ellipse. All these ellipses share a common numerical value for the eccentricity e.

Details concerning the treatment of the CRTBP can be found, e.g. in Boccaletti & Pucacco
([1], vol. 1, Ch. 4), Brouwer & Clemence ([2], Ch. X, §3; Ch. II, §10), Marchal [7], Szebehely
([8], Ch. 1).

As for the elliptic problem, see Boccaletti & Pucacco ([1], vol. 1, Ch. 4, §4.7), Marchal
([7], Ch. 9, §9.3), Szebehely ([8], Ch. 10, §10.3), and some of the journal articles in the section
of References at the end of this contributed paper.

For future calculations, fix some notations and the value of some parameters occurring in
the problem. According to the usual practice and without loss of generality, after appropriate
choice of the system of units, we are allowed to take the value of the gravitational constant equal
to 1, and put for the finite masses m0 + m1 = 1, from which we choose m1 ≡ ν , m0 = 1− ν,
with 0 ≤ ν ≤ 1/2. If, in addition to this, the value of the orbital angular momentum of the
relative motion of the primaries is unity, then the semi–latus rectum of that elliptic relative orbit
will be 1, and the polar equation of this ellipse will read

r = 1/ (1 + e cos f) . (2)

Let us coordinatize the orbital plane of the primaries by means of a Cartesian reference
frame with the origin placed at the centre of mass of m0 and m1. Let (ξ, η) denote the
coordinates of the infinitesimal mass m2 in this configuration space, and consider the cor-
responding phase space, by introducing the corresponding canonically conjugate momenta
pξ = dξ/dt, pη = dη/dt. In this fixed reference system, the Hamiltonian function of the
problem of motion of the infinitesimal body (per unit of mass), with time t as the independent
variable, can be expressed as

H =
1

2

(
p2

ξ + p2
η

)
−
(

1− ν

r0

+
ν

r1

)
, (3)

r2
j = dist2 (m2, mj) = (ξ − ξj)

2 + (η − ηj)
2 , j = 0, 1 , (4)

where, obviously, here r0 and r1 denote the distances of the infinitesimal body to the primaries.
Transition to a non–uniformly rotating pulsating system with coordinates (X,Y ) is con-

sidered. Furthermore, one wishes the new X–axis to coincide –at each instant of time– with
the straight line connecting the primaries, and the scale of distances to be such that the unit of
length should be equal to that in the fixed reference frame divided by the distance r between the
primaries. Accordingly, the separation between the primaries will remain constant and equal
to 1, and the position of the finite masses (fixed on the new, moving abscissa–axis) will be
determined by the coordinates

(X0, Y0) = (−ν, 0) , (X1, Y1) = (1− ν, 0) . (5)
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This is accomplished by a point transformation in configuration space that is the composition
of a rotation

ξ = X cos f − Y sin f , η = X sin f + Y cos f , (6)

and a homotecy with similitude ratio r. This transformation can be extended to a (time–
dependent) completely canonical transformation

(ξ, η, pξ, pη; t) −→ (X, Y, PX , PY ; t) ,

derived from a generating function of the third type (Goldstein [5], Ch. 9, §9.1 and §9.2;
Szebehely [8], Ch. 7, §7.2)

S3 ≡ S3 (X,Y, pξ, pη; f(t)) = −r [ pξ (X cos f − Y sin f) + pη (X sin f + Y cos f) ] ,(7)

from which the following transformation equations are obtained,

ξ = −∂S3/∂pξ = r (X cos f − Y sin f) , η = −∂S3/∂pη = r (X sin f + Y cos f) , (8)

PX = −∂S3/∂X = r (pξ cos f + pη sin f) , PY = −∂S3/∂Y = r (−pξ sin f + pη cos f)(9)

and then

pξ = (pX cos f − pY sin f) /r , pη = (pX sin f + pY cos f) /r . (10)

The rule for the transformation of the Hamiltonian into a new function in the new variables is

H → H̃ : H (ξ, η, pξ, pη; t) −→ H̃ (X, Y, PX , PY ; t) ,

H̃ = H∗ (X, Y, PX , PY ; t) +
∂S3

∂t
(X, Y, PX , PY ; t) (11)

∂S3/∂t = (∂S3/∂f) (df/dt) . (12)

From the well–known geometrical and dynamical properties of the (Keplerian) relative orbit,
our previous choice of units and Eq. (2), the law of areas yields

r2 (df/dt) = 1 =⇒ df/dt = 1/r2 = (1 + e cos f)2 , dt = f̃ df, f̃ = r2 , (13)

which also expresses a differential transformation of the independent variable t → f . From the
polar equation of the relative orbit, Eq. (2),

dr/df = (e sin f)/ (1 + e cos f)2 = (e sin f) r2 . (14)

Accordingly,

∂S3/∂f = − r [ pξ (−X sin f − Y cos f) + pη (X cos f − Y sin f) ] + r S3 e sin f

= Y PX −XPY − re sin f (XPX + Y PY ) , ∂S3/∂t =
(
1/r2
)
∂S3/∂f ,(15)

H̃ =
1

r2

[
1

2

(
P 2

X + P 2
Y

)
+ (Y PX −XPY )

]
− e sin f

r
(XPX + Y PY ) −(

1− ν

r̃0

+
ν

r̃1

)
, (16)

r̃j
2 = r 2

[
(X −Xj)

2 + (Y − Yj)
2
]

, j = 0, 1 , (17)

where H̃ stands for the Hamiltonian of the problem when expressed in terms of the new canon-
ical set, using t as the independent variable.
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§3. A Modified Hamiltonian

The Hamiltonian can be further modified by changing the independent variable from t to a new
pseudo–time. If the eccentric anomaly E of the relative orbit of the primaries is introduced as
the new independent variable, a reparametrization of motion t −→ E is performed, for instance
by means of a differential time transformation dt = f dE. The corresponding Hamiltonian,
with this fictitious time E as the independent variable, will be H = f H̃. The usual basic
formulae pertaining to the mathematical description of elliptic Keplerian motion, along with
the choice of our system of units and the values previously fixed for some parameters, allow us
to conclude that

f = r/
√

1− e2 , where r = a(1− e cos E) . (18)

Thus, the Hamiltonian for the motion of the infinitesimal body, in canonical variables
(X, Y, PX , PY ), with the eccentric anomaly E of the primaries’ relative orbit as the time pa-
rameter, reads

H ≡ H (X, Y, PX , PY ; E) =

√
1− e2

1− e cos E

[
1

2

(
P 2

X + P 2
Y

)
+ (Y PX −XPY )

]
− Φ(X, Y ; ν)√

1− e2
− e sin E

1− e cos E
(XPX + Y PY ) , (19)

Φ(X, Y ; ν) = r

(
1− ν

r̃0

+
ν

r̃1

)
=

1− ν

r 0

+
ν

r 1

, r = dist(m0, m1) , (20)

r j
2 = r̃j

2/r2 = (X −Xj)
2 + (Y − Yj)

2, j = 0, 1 , (21)

(X0, Y0) = (−ν, 0) , (X1, Y1) = (1− ν, 0) , (22)

where, clearly, r 0 and r 1 represent the distances of the infinitesimal mass to the primaries, r is
the distance between the primaries. while the position of the primaries is given by coordinates
(Xj, Yj)

§4. Fixing the Origin of Phase Space at a Libration Point

In order to study the small–amplitude orbits of the infinitesimal particle in the neighbourhood
of a libration point, we must obtain an adequate expression for the Hamiltonian governing such
motions.

Let L(a, b) be a Lagrangian point, which in the phase space of the canonical variables

(X, Y, PX , PY ) is located at L ≡ L
(
X̂0, Ŷ0, PX̂0

, PŶ0

)
, with

X̂0 = a , PX̂0
(E) = − b + a

e sin E√
1− e2

, (23)

Ŷ0 = b , PŶ0
(E) = a + b

e sin E√
1− e2

, (24)

and constitutes a stationary solution of the problem. The origin of the phase space will be

transferred to point L
(
X̂0, Ŷ0, PX̂0

, PŶ0

)
, by means of a canonical translation defining a new

canonical set (x, y, px, py).
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A point transfomation representing a mere translation

X = x + X0 ⇐⇒ x = X − X0 , Y = y + Y0 ⇐⇒ y = Y − Y0 , (25)

can be extended to a canonical transformation (Goldstein [5], §9.2, pp. 386–387; see also
Marchal [7], pp. 197–198; Szebehely [8] , §7.4, pp. 352–354) whose generating function and
equations may be assumed to have the form

S2 ≡ S2 (X, Y, px, py) = (X −X0) px + (Y − Y0) py + g(X, Y ) , (26)

PX =
∂S2

∂X
= px +

∂g

∂X
= px + PX0 =⇒ g = XPX0 + ϕ(Y ) , (27)

PY =
∂S2

∂Y
= py +

∂g

∂Y
= py + PY0 =⇒ g = Y PY0 + ψ(X) , (28)

where g is any differentiable function of the old coordinates, whereas ϕ and ψ are arbitrary
functions of their respective arguments. For our purposes, they can be chosen in such a way
that g = XPX0 + Y PY0 ,

S2 = (X −X0)px + (Y − Y0)py + XPX0 + Y PY0 (29)

= X(px + PX0)−X0px + Y (py + PY0)− Y0py, (30)

In our case, we perform a canonical transformation

(X, Y, PX , PY ; E) −→ (x, y, px, py; E) ,

derived from a generating function, in which the independent variable E explicitly occurs,

S2 (X, Y, px, py; E) = X
(
px + PX̂0

)
− X̂0px + Y

(
py + PŶ0

)
− Ŷ0py (31)

= (X − a)px + (Y − b)py + XPX̂0
(E) + Y PŶ0

(E) . (32)

The transformation equations derived from S2 are

PX =
∂S2

∂X
= px + PX̂0

, x =
∂S2

∂px

= X − a , (33)

PY =
∂S2

∂Y
= py + PŶ0

, y =
∂S2

∂py

= Y − b , (34)

and the rule for the transformation of the Hamiltonian yields

H → K : H (X,Y, PX , PY ; E) −→ K (x, y, px, py; E) , (35)

K = H ∗ (x, y, px, py; E) +
∂S2

∂E
(x, y, px, py; E) , (36)

∂S2

∂E
= (ax + by)

e cos E√
1− e2

+
(
a2 + b2

) e cos E√
1− e2

. (37)

Accordingly, the final expression for the Hamiltonian in the new canonical variables takes on
the form:

K =

√
1− e2

1− e cos E

[
1

2

(
p2

x + p2
y

)
+ (ypx − xpy)

]
− ⊕(x, y; ν)√

1− e2

− e sin E

1− e cos E
(xpx + ypy) +

e cos E

2
√

1− e2
(a2 + b2) , (38)

⊕ = Φ∗(x, y; ν) + (ax + by) +
1

2

(
a2 + b2

)
, (39)
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where we have underlined the “missing” term [cf Şelaru & Cucu–Dumitrescu [9], Eq. (9); [10],
Eq. (9)].

The canonical system of differential equations of motion derived from K will account for
the orbital evolution of the infinitesimal particle around the considered libration point. Remem-
ber that the canonical variables (x, y, px, py) measure “deviations” with respect to the origin of
the phase space (which is, precisely, an equilibrium solution).

§5. Outline of the Procedure

If , to start with, “deviations” are supposed to be small, one may undertake the study of the
dynamical system generated by the linearized equations of motion. To this end, one performs
a Taylor expansion of K, in terms of the canonical variables, around the origin (i.e., around the
libration point at issue). Given that, in this reference framework, the origin is an equilibrium
position, the gradient of function K vanishes when evaluated at the origin. The canonical
equations derived from the “Hamiltonian” constructed with terms up to the quadratic part of
that expansion will give rise to the linearized equations of motion.

Next, a perturbative treatment of that system will use a power series expansion of the pre-
ceding truncated “Hamiltonian”, arranged in ascending powers of the eccentricity e of the rel-
ative orbit of the primaries. Let K̂ (x, y, px, py; E; e) denote the resulting expression after these
steps, truncated at the desired order in e. The corresponding canonical equations and the linear
differential Lie operator are

x′ ≡ dx

dE
=

∂K̂
∂px

, p′x ≡
dpx

dE
= − ∂K̂

∂x
, (40)

y′ ≡ dy

dE
=

∂K̂
∂py

, p′y ≡
dpy

dE
= − ∂K̂

∂y
, (41)

D ≡ d

dE
=

∂

∂x

dx

dE
+

∂

∂y

dy

dE
+

∂

∂px

dpx

dE
+

∂

∂py

dpy

dE
+

∂

∂E
, (42)

which allows us to obtain the solution in the form of Lie series, once we have given initial
conditions (cf Delva [3]).
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