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ON SOME EXTENDED MAXIMUM AND

ANTIMAXIMUM PRINCIPLES
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Abstract. We give here new results on eigenvalue problems and on the maximum or the
antimaximum principle for some elliptic problems with weights which are either defined
on IRN or defined on non smooth domains.
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§1. Recalls: A classical example

Let us first recall some classical results valid for the model case of the Dirichlet Laplacian
defined on a smooth bounded domain Ω ∈ IRN . We assume

(H1) Ω is a smooth bounded domain in IRN .

(H2) f ∈ L2(Ω); f(x) > 0 a.e. in Ω.

We consider the following Dirichlet boundary problem defined on Ω:

(Ea;f ) −∆u = au + f in Ω; u|∂Ω = 0.

1.1. Eigenvalue Problem

First let us recall some classical results for the associated eigenvalueproblem (Eλ,0):

(Eλ,0) −∆u = λu in Ω; u|∂Ω = 0.

It is well known that there exists an infinite (and countable) number of solutions (eigenpairs)
(λk; ϕk), k ∈ IN , ‖ϕk‖ = 1 where ‖.‖ denotes the L2 norm and (., .) the scalar product.
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With this normalization, the set of eigenfunctions ϕk is an orthonormal basis of L2, and

(1) λ1 = inf
u∈H1

0 (Ω)

∫
Ω
|∇u|2∫
Ω

u2
;

the equality holds in (1) iff u = c.ϕ1.
Also ϕ1 does not change sign and we choose

(2) ϕ1(x) > 0, x ∈ Ω.

Also the second eigenvalue is given by

(3) λ2 = inf
u∈H1

0 (Ω);
∫

uϕ1=0

∫
Ω
|∇u|2∫
Ω

u2
.

1.2. The Maximum Principle for a Smooth Bounded Domain

We say that (Ea,f ) satisfies the

-(weak) Maximum Principle if for f ≥ 0; f �≡ 0 any solution u ≥ 0.
-(strong) Maximum Principle if for f ≥ 0; f �≡ 0 any solution u > 0.
-Hopf Maximum Principle if for f ≥ 0; f �≡ 0 any solution u > 0 and also
∂u
∂n
|∂Ω < 0, where ∂.

∂n
|∂Ω < 0 denotes the outward normal derivative.

If (H1) and (H2) are satisfied, it is well known that the Hopf Maximum holds for Problem
(Ea,f ) iff a < λ1. If a = λ1, one has the Fredholm alternative:
There exists a solution to (Eλ1,f ) iff

∫
fϕ1 = 0.

1.3. The antimaximum Principle for a smooth bounded domain

If λ1 < a < λ2 , (−∆ − aI) is invertible and hence there exists u solution to (Ea,f ). It has
been proved by Clément and Peletier ([ClPe]), in 1979 the Antimaximum Principle :

Theorem 1. : If (H1) and (H2) are satisfied and if Ω is smooth enough,

∀f ∈ L2(Ω), f ≥ 0; f �≡ 0; ∃δ(f) > 0, s.t. ∀λ1 < λ < λ1 + δ(f) < λ2, ⇒

(AM ′) u(x) < 0, x ∈ Ω; ∂u/∂n|∂Ω > 0.

Several extensions have been done by many authors (see e.g. [H] for problems with indefinite
weights and see e.g. [Va] and [FlGoTaTh] for the Dirichlet p-Laplacian). Here we improve
some of these results for problem with weights in two directions:

–To problems involving Schrödinger operators on IR2.
–To problems defined on non necessarily smooth domains.

§2. Schrödinger Problems on IR2

We recall first some earlier results of comparison of the solution u with the groundstate ϕ1.



On Some Extended Maximum and Antimaximum Principles 15

2.1. Schrödinger Equations on IR2

We consider the equation

(4) Lu(x) := (−∆ + q(x))u(x) = au(x) + f(x), x ∈ IR2,

where q(x) > cst > 0, and tends to +∞ as |x| → ∞.

Hence D(L) = {u ∈ L2; Lu ∈ L2} is compactly embedded in L2 and L has a discrete
spectrum (exactly as the Dirichlet Laplacian). The smallest eigenvalue λ1 is associated to "the
ground-state" ϕ1 > 0. For a < λ1, the strong maximum principle is classical (see e.g. [ReSi]):
(L− aI)−1 "improves positivity" that is f ∈ L2; f ≥ 0; f �≡ 0 implies u := (L− aI)−1f > 0.

This result has been improved for some radial potentials. Assume

(H3) q : x → q(|x|) := q(r); q(r) = (1 + r2)1+ε, ε > 0.

f ∈ L2(IR2), f ≥ 0, f > 0 on an open set with positive measure.

It is shown in [AlTa], that for any a < λ1, u solution to (4) is "ϕ1-positive", that is, there exists
c(f, a) > 0 such that

u(x) > c(f, a)ϕ1(x), ∀x ∈ IR2.

Now we assume moreover that f ∈ X1,2 with X1,2 the Banach space of all the functions
f ∈ L2

loc(IR
2) having the following properties:

(5) (
∂f

∂θ
)(r, •) ∈ L2(−π, π) for all r > 0,

and there is a constant C ≥ 0 such that

(6)
‖f(r, θ)‖+

(
1
2π

∫ ∣∣∂f
∂θ

f(r, θ)
∣∣2 dθ
) 1

2 ≤ Cu1(r)

for almost every r ≥ 0 and θ ∈ [−π, π].

With these hypotheses, it is shown in [AlFlTa] that there exists δ(f) > 0 such that,

∀a ∈]λ1, λ1 + δ[⊂]λ1, λ2[∃c3(f, a) s.t. u < −c3ϕ1;

We say that u is "ϕ1-negative".

Finally, in [AlBe] the constants δ(f) > 0, c(f, a), c3 have been computed.

2.2. Some Cooperative Systems of Schrödinger operators

We turn now our attention to cooperative systems as:

(S)

{
Lui := −∆ui + q(|x|)ui =

∑n
j=1 aijuj + λui + fi in IR2;

i = 1, ..., n
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We suppose that the potential q is as above, and that the coefficients aij (1 ≤ i, j ≤ n) are
constants such that aij > 0 for i �= j ( cooperative system). More, we suppose that the matrice
A = (aij) has only reals eigenvalues.
Assume that 0 ≤ fi ∈ L2(IR2) (1 ≤ i ≤ n).
Denote by u = (u1, ..., un) the weak solution of (S) (when it exists) and denote by Λ1 the
principal eigenvalue of (S) (obtained for f ≡ 0). It is associated to Φ = (Φ1, ..., Φn) > 0 the
"ground state".

Theorem 2. With the hypotheses and notations above, we have ([Be]):

(i) if λ < Λ1, there exists C = const > 0 such that u ≥ CΦ
(ii) for f ∈ Y n, with Y = X1,2 ⊂ L2(IR2) , there exists δ = δ(f) > 0 such that, if

λ ∈ (Λ1, Λ1 + δ), then u ≤ −C ′Φ, C ′ = cst > 0.

2.3. Schrödinger Equations on IR2 with a positive weight

It is also possible to consider the case of a Schrödinger equation with a positive weight (as in
[AC]).
Let us consider the following equation

Lu = (−∆ + q)u = λmu + f in IR2,

where q is a radial positive potential satisfying (H3) and m is a radially symmetric positive and
bounded weight such that 0 < m1 < m(r) < m2 for r ≥ 0, with m1 and m2 two positive
constants.
Of course for such a potential there exists a principal eigenpair (λ1, ϕ1 > 0). Then we obtain
the following result:

Theorem 3. Assume that u ∈ D(L), Lu = λmu + f ∈ L2(IR2), λ ∈ IR, and f ≥ 0 a.e. in
IR2 with f > 0 in some set of positive Lebesgue measure. Then, for every λ ∈ (−∞, λ1), there
exists a constant c > 0 (depending upon f and λ) such that

u ≥ cϕ1 in IR2.

Moreover, if also f ∈ X1,2, then there exists a positive number δ (depending upon f ) such that,
for every λ ∈ (λ1, λ1 + δ), the inequality

u ≤ −cϕ1 in IR2

is valid with a constant c > 0 (depending upon f and λ).

§3. Non Smooth Domains

We consider now an eigenvalue problem with indefinite weight defined on "any bounded do-
main" Ω (that is a domain which is not necessarily smooth); we extend to problems with in-
definite weight some of earlier results (valid for positive weights) by Berestycki, Nirenberg,
Varadhan ([BNV]).
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Assume that the weight function m is such that:

m ∈ L∞(Ω)

and |Ω+| > 0, |Ω−| > 0, (H4) where |.| denotes the Lebesgue measure and where

Ω+ := {x ∈ Ω : m(x) > 0}; Ω− := {x ∈ Ω : m(x) < 0}.

We consider the following eigenvalue problem :

(REV P )

{ −∆u = λm(x)u on Ω

u
u0= 0 on ∂Ω

where the "refined boundary conditions" u
u0= 0 on ∂Ω is defined in [BNV].

Before going further, let us first recall it.

3.1. Refined Dirichlet Boundary Condition ([BNV])

We do not assume here that ∂Ω is smooth. The classical Dirichlet boundary condition : u = 0
at every point of ∂Ω is too strong. It has to be replaced by the "refined" ones introduced in
Berestycki, Nirenberg, Varadhan ([BNV]).
We introduce first several definitions

Definition 1. ("strong barrier") A point y ∈ ∂Ω is said to admit a "strong barrier" if for
some ball Br(y) = {|x− y| < r} there is in Br(y) ∩ Ω = U a positive function h ∈ W 2,n

loc (U)
satisfying −∆h ≥ 1 which can be extended continuously to the point y with h(y) = 0.

Note that every point y ∈ ∂Ω where ∂Ω statisfies an exterior cone condition admits a strong
barrier.

We define now as in [BNV] "the boundary function" u0 associated to the (refined) Dirichlet
Laplacian defined on this Ω. It plays a crucial role.
Let (Hj)j∈IN∗ be a sequence of open subsets of Ω having smooth boundaries, and such that

Hj ⊂ Hj ⊂ Hj+1, ∪jHj = Ω.

Let us denote by uj ∈ W 2,p(Hj) the solution of the following (classical) Dirichlet boundary
value problem: {

−∆uj = 1 on Hj

uj = 0 on ∂Hj

As j →∞, the sequence (uj) ↗ u0, weakly in W 2,p (K), strongly in C1 (K) for any compact
set K ⊂ Ω. Hence

−∆u0 = 1 in Ω.

Moreover, on the boundary, u0 can be extended to a continuous function at every point y of ∂Ω
admitting a strong barrier by setting

u0(y) = 0.

The boundary-function u0 defined above is independent of the choice of subsets Hj .
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Definition 2. We say that a sequence of points (xk)k∈IN∗ in Ω "tends to the boundary ∂Ω w.r.t. u0",
and we write xk

u0→ ∂Ω if u0(xk) → 0 .

Definition 3. ("The Refined Dirichlet Boundary Condition") We say that u "vanishes as"
u0 on the boundary ∂Ω and we write u

u0= 0 on ∂Ω if, for any sequence xk
u0→ ∂Ω, we have

u(xj) → 0.

Example: If B is the unit ball in IR3 and if Ω = B\ {0}, then u0 (x) =
1

6
(1− |x|2) .Then,

in this case, u
u0= 0 on ∂Ω if and only if u = 0 on ∂B.

3.2. Eigenvalue Problem

Now, we consider the eigenvalue problem

(REV P )

{ −∆u = λm(x)u on Ω

u
u0= 0 on ∂Ω

For m ≡ 1 or m > 0, the problem is studied in ([BNV]) and ([Bi]).
We assume here that m ∈ C(Ω), and there is x ∈ Ω such that m(x) > 0.

Theorem 4. : There exists a positive function φ1 in W 2,p
loc (Ω), ∀p < ∞, called a "principal

eigenfunction" , and a positive real λ1, called "principal eigenvalue" satisfying

−∆φ1 = λ1m(x)φ1, φ1
u0= 0 on ∂Ω.

The proof of this theorem can be found in [Le].
A similar result is shown in ([FlHeTh]), under the assumptions m ∈ L∞(Ω), and Ω+ = {x ∈
Ω|m(x) > 0}, Ω− = {x ∈ Ω|m(x) < 0} such that their Lebesgue measure |Ω+| > 0 and
|Ω−| > 0

Consequence: if m changes of sign, there are two principal eigenvalues.

Remark: We know nothing about existence of other eigenvalues.

3.3. The case of systems

The existence of a principal eigenfunction can be extended to the case of some systems; let us
consider :

(RCSP )

⎧⎨⎩
(
−∆ 0
0 −∆

)(
u
v

)
= λ

(
a b
c d

)(
u
v

)
in Ω

u
u0= 0 and v

u0= 0 on ∂Ω

The coefficients a, b, c, d are in L∞(Ω). We assume the existence of two positive numbers β
and γ such that b(x) ≥ β and c(x) ≥ γ.
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Theorem 5. : There exists a positive vector

(
φ1

ψ1

)
in W 2,p

loc (Ω)2, ∀p < ∞, called a "prin-

cipal eigenvector" , and a positive λ1, called "principal eigenvalue" satisfying⎧⎨⎩
(
−∆ 0
0 −∆

)(
φ1

ψ1

)
= λ1

(
a b
c d

)(
φ1

ψ1

)
in Ω

φ1
u0= 0 and ψ1

u0= 0 on ∂Ω
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