ON SOME EXTENDED MAXIMUM AND ANTIMAXIMUM PRINCIPLES

Bénédicte Alziary, Naziha Besbas, Laure Cardoulis, Jacqueline Fleckinger, Marie-Hélène Lécureux

Abstract. We give here new results on eigenvalue problems and on the maximum or the antimaximum principle for some elliptic problems with weights which are either defined on $\mathbb{I}\!R^N$ or defined on non smooth domains.

Keywords: Antimaximum Principle, Eigenvalues, Indefinite Weight, Maximum principle, Schrödinger operator

AMS classification: AMS classification codes: 35

§1. Recalls: A classical example

Let us first recall some classical results valid for the model case of the Dirichlet Laplacian defined on a smooth bounded domain $\Omega \in \mathbb{R}^N$. We assume

 (H_1) Ω is a smooth bounded domain in \mathbb{R}^N .

(H₂)
$$f \in L^2(\Omega); f(x) > 0 \text{ a.e. in } \Omega.$$

We consider the following Dirichlet boundary problem defined on Ω :

$$(E_{a;f}) \qquad -\Delta u = au + f \text{ in } \Omega; \ u|_{\partial\Omega} = 0.$$

1.1. Eigenvalue Problem

First let us recall some classical results for the associated eigenvalue problem $(E_{\lambda,0})$:

$$(E_{\lambda,0}) \qquad \qquad -\Delta u = \lambda u \text{ in } \Omega; \ u|_{\partial\Omega} = 0.$$

It is well known that there exists an infinite (and countable) number of solutions (eigenpairs) $(\lambda_k; \varphi_k), k \in N, ||\varphi_k|| = 1$ where ||.|| denotes the L^2 norm and (.,.) the scalar product.

With this normalization, the set of eigenfunctions φ_k is an orthonormal basis of L^2 , and

(1)
$$\lambda_1 = \inf_{u \in H_0^1(\Omega)} \frac{\int_{\Omega} |\nabla u|^2}{\int_{\Omega} u^2};$$

the equality holds in (1) $iff \ u = c.\varphi_1$. Also φ_1 does not change sign and we choose

(2)
$$\varphi_1(x) > 0, \ x \in \Omega$$

Also the second eigenvalue is given by

(3)
$$\lambda_2 = \inf_{u \in H_0^1(\Omega); \int u\varphi_1 = 0} \frac{\int_{\Omega} |\nabla u|^2}{\int_{\Omega} u^2}.$$

1.2. The Maximum Principle for a Smooth Bounded Domain

We say that $(E_{a,f})$ satisfies the

-(weak) Maximum Principle if for $f \ge 0$; $f \ne 0$ any solution $u \ge 0$. -(strong) Maximum Principle if for $f \ge 0$; $f \ne 0$ any solution u > 0. -Hopf Maximum Principle if for $f \ge 0$; $f \ne 0$ any solution u > 0 and also $\frac{\partial u}{\partial n}|_{\partial\Omega} < 0$, where $\frac{\partial}{\partial n}|_{\partial\Omega} < 0$ denotes the outward normal derivative.

If (H_1) and (H_2) are satisfied, it is well known that the Hopf Maximum holds for Problem $(E_{a,f})$ iff $a < \lambda_1$. If $a = \lambda_1$, one has the *Fredholm alternative*: There exists a solution to $(E_{\lambda_1,f})$ iff $\int f\varphi_1 = 0$.

1.3. The antimaximum Principle for a smooth bounded domain

If $\lambda_1 < a < \lambda_2$, $(-\Delta - aI)$ is invertible and hence there exists u solution to $(E_{a,f})$. It has been proved by Clément and Peletier ([CIPe]), in 1979 the Antimaximum Principle :

Theorem 1. : If (H_1) and (H_2) are satisfied and if Ω is smooth enough,

$$\forall f \in L^2(\Omega), f \ge 0; f \not\equiv 0; \ \exists \delta(f) > 0, \ s.t. \ \forall \lambda_1 < \lambda < \lambda_1 + \delta(f) < \lambda_2, \Rightarrow$$

$$(AM') u(x) < 0, x \in \Omega; \ \partial u/\partial n|_{\partial\Omega} > 0.$$

Several extensions have been done by many authors (see e.g. [H] for problems with indefinite weights and see e.g. [Va] and [FlGoTaTh] for the Dirichlet *p*-Laplacian). Here we improve some of these results for problem with weights in two directions:

-To problems involving Schrödinger operators on R^2 .

-To problems defined on non necessarily smooth domains.

§2. Schrödinger Problems on \mathbb{R}^2

We recall first some earlier results of comparison of the solution u with the groundstate φ_1 .

On Some Extended Maximum and Antimaximum Principles

2.1. Schrödinger Equations on \mathbb{R}^2

We consider the equation

(4)
$$Lu(x) := (-\Delta + q(x))u(x) = au(x) + f(x), \ x \in \mathbb{R}^2,$$

where q(x) > cst > 0, and tends to $+\infty$ as $|x| \to \infty$.

Hence $D(L) = \{u \in L^2; Lu \in L^2\}$ is compactly embedded in L^2 and L has a discrete spectrum (exactly as the Dirichlet Laplacian). The smallest eigenvalue λ_1 is associated to "the ground-state" $\varphi_1 > 0$. For $a < \lambda_1$, the strong maximum principle is classical (see *e.g.* [ReSi]): $(L-aI)^{-1}$ "improves positivity" that is $f \in L^2$; $f \ge 0$; $f \not\equiv 0$ implies $u := (L-aI)^{-1}f > 0$.

This result has been improved for some radial potentials. Assume

(H₃)
$$q: x \to q(|x|) := q(r); \ q(r) = (1+r^2)^{1+\varepsilon}, \ \varepsilon > 0.$$

 $f \in L^2(\mathbb{I}\!\!R^2), f \ge 0, f > 0$ on an open set with positive measure.

It is shown in [AlTa], that for any $a < \lambda_1$, u solution to (4) is " φ_1 -positive", that is, there exists c(f, a) > 0 such that

$$u(x) > c(f, a)\varphi_1(x), \ \forall x \in \mathbb{R}^2.$$

Now we assume moreover that $f \in X^{1,2}$ with $X^{1,2}$ the Banach space of all the functions $f \in L^2_{loc}(\mathbb{I}\!R^2)$ having the following properties:

(5)
$$(\frac{\partial f}{\partial \theta})(r, \bullet) \in L^2(-\pi, \pi) \quad \text{for all } r > 0,$$

and there is a constant $C \ge 0$ such that

(6)
$$\|f(r,\theta)\| + \left(\frac{1}{2\pi} \int \left|\frac{\partial f}{\partial \theta} f(r,\theta)\right|^2 d\theta\right)^{\frac{1}{2}} \le C u_1(r)$$
 for almost every $r \ge 0$ and $\theta \in [-\pi,\pi]$.

With these hypotheses, it is shown in [AlFITa] that there exists $\delta(f) > 0$ such that,

$$\forall a \in]\lambda_1, \lambda_1 + \delta[\subset]\lambda_1, \lambda_2[\exists c_3(f, a) \ s.t. \ u < -c_3\varphi_1;$$

We say that u is " φ_1 -negative".

Finally, in [AlBe] the constants $\delta(f) > 0$, c(f, a), c_3 have been computed.

2.2. Some Cooperative Systems of Schrödinger operators

We turn now our attention to cooperative systems as:

$$(S) \begin{cases} Lu_i := -\Delta u_i + q(|x|)u_i = \sum_{j=1}^n a_{ij}u_j + \lambda u_i + f_i & \text{in } \mathbb{R}^2; \\ i = 1, ..., n \end{cases}$$

We suppose that the potential q is as above, and that the coefficients a_{ij} $(1 \le i, j \le n)$ are constants such that $a_{ij} > 0$ for $i \ne j$ (cooperative system). More, we suppose that the matrice $A = (a_{ij})$ has only reals eigenvalues.

Assume that $0 \leq f_i \in L^2(\mathbb{R}^2)$ $(1 \leq i \leq n)$.

Denote by $u = (u_1, ..., u_n)$ the weak solution of (S) (when it exists) and denote by Λ_1 the principal eigenvalue of (S) (obtained for $f \equiv 0$). It is associated to $\Phi = (\Phi_1, ..., \Phi_n) > 0$ the "ground state".

Theorem 2. With the hypotheses and notations above, we have ([Be]):

(i) if $\lambda < \Lambda_1$, there exists C = const > 0 such that $u \ge C\Phi$ (ii) for $f \in Y^n$, with $Y = X^{1,2} \subset L^2(\mathbb{R}^2)$, there exists $\delta = \delta(f) > 0$ such that, if $\lambda \in (\Lambda_1, \Lambda_1 + \delta)$, then $u \le -C'\Phi$, C' = cst > 0.

2.3. Schrödinger Equations on \mathbb{R}^2 with a positive weight

It is also possible to consider the case of a Schrödinger equation with a positive weight (as in [AC]).

Let us consider the following equation

$$Lu = (-\Delta + q)u = \lambda mu + f \text{ in } \mathbb{R}^2,$$

where q is a radial positive potential satisfying (H_3) and m is a radially symmetric positive and bounded weight such that $0 < m_1 < m(r) < m_2$ for $r \ge 0$, with m_1 and m_2 two positive constants.

Of course for such a potential there exists a principal eigenpair $(\lambda_1, \varphi_1 > 0)$. Then we obtain the following result:

Theorem 3. Assume that $u \in \mathcal{D}(L)$, $Lu = \lambda mu + f \in L^2(\mathbb{R}^2)$, $\lambda \in \mathbb{R}$, and $f \ge 0$ a.e. in \mathbb{R}^2 with f > 0 in some set of positive Lebesgue measure. Then, for every $\lambda \in (-\infty, \lambda_1)$, there exists a constant c > 0 (depending upon f and λ) such that

$$u \ge c\varphi_1$$
 in $\mathbb{I}\!\mathbb{R}^2$.

Moreover, if also $f \in X^{1,2}$ *, then there exists a positive number* δ (depending upon f) such that, for every $\lambda \in (\lambda_1, \lambda_1 + \delta)$, the inequality

$$u \leq -c\varphi_1$$
 in \mathbb{R}^2

is valid with a constant c > 0 (depending upon f and λ).

§3. Non Smooth Domains

We consider now an eigenvalue problem with indefinite weight defined on "any bounded domain" Ω (that is a domain which is not necessarily smooth); we extend to problems with indefinite weight some of earlier results (valid for positive weights) by Berestycki, Nirenberg, Varadhan ([BNV]). Assume that the weight function m is such that:

$$m \in L^{\infty}(\Omega)$$

and $|\Omega_+| > 0$, $|\Omega_-| > 0$, (H_4) where |.| denotes the Lebesgue measure and where

$$\Omega_+ := \{ x \in \Omega : m(x) > 0 \}; \ \Omega_- := \{ x \in \Omega : m(x) < 0 \}.$$

We consider the following eigenvalue problem :

$$(REVP) \qquad \qquad \left\{ \begin{array}{l} -\Delta u = \lambda m(x)u \ on \ \Omega \\ u \stackrel{u_0}{=} 0 \ on \ \partial\Omega \end{array} \right.$$

where the "refined boundary conditions" $u \stackrel{u_0}{=} 0$ on $\partial\Omega$ is defined in [BNV]. Before going further, let us first recall it.

3.1. Refined Dirichlet Boundary Condition ([BNV])

We do not assume here that $\partial \Omega$ is smooth. The classical Dirichlet boundary condition : u = 0 at every point of $\partial \Omega$ is too strong. It has to be replaced by the "refined" ones introduced in Berestycki, Nirenberg, Varadhan ([BNV]).

We introduce first several definitions

Definition 1. ("strong barrier") A point $y \in \partial \Omega$ is said to admit a "strong barrier" if for some ball $B_r(y) = \{|x - y| < r\}$ there is in $B_r(y) \cap \Omega = U$ a positive function $h \in W^{2,n}_{loc}(U)$ satisfying $-\Delta h \ge 1$ which can be extended continuously to the point y with h(y) = 0.

Note that every point $y \in \partial \Omega$ where $\partial \Omega$ statisfies an exterior cone condition admits a strong barrier.

We define now as in [BNV] "the boundary function" u_0 associated to the (refined) Dirichlet Laplacian defined on this Ω . It plays a crucial role.

Let $(H_i)_{i \in \mathbb{N}^*}$ be a sequence of open subsets of Ω having smooth boundaries, and such that

$$H_j \subset \overline{H_j} \subset H_{j+1}, \ \cup_j H_j = \Omega.$$

Let us denote by $u_j \in W^{2,p}(H_j)$ the solution of the following (classical) Dirichlet boundary value problem:

$$\begin{cases} -\Delta u_j = 1 \text{ on } H_j \\ u_j = 0 \text{ on } \partial H_j \end{cases}$$

As $j \to \infty$, the sequence $(u_j) \nearrow u_0$, weakly in $W^{2,p}(K)$, strongly in $C^1(K)$ for any compact set $K \subset \Omega$. Hence

$$-\Delta u_0 = 1 \text{ in } \Omega.$$

Moreover, on the boundary, u_0 can be extended to a continuous function at every point y of $\partial \Omega$ admitting a strong barrier by setting

$$u_0(y) = 0.$$

The boundary-function u_0 defined above is independent of the choice of subsets H_i .

Definition 2. We say that a sequence of points $(x_k)_{k \in \mathbb{I}^{N^*}}$ in Ω "tends to the boundary $\partial \Omega$ w.r.t. u_0 ", and we write $x_k \xrightarrow{u_0} \partial \Omega$ if $u_0(x_k) \to 0$.

Definition 3. ("The Refined Dirichlet Boundary Condition") We say that u "vanishes as" u_0 on the boundary $\partial\Omega$ and we write $u \stackrel{u_0}{=} 0$ on $\partial\Omega$ if, for any sequence $x_k \stackrel{u_0}{\to} \partial\Omega$, we have $u(x_i) \to 0$.

Example: If B is the unit ball in \mathbb{R}^3 and if $\Omega = B \setminus \{0\}$, then $u_0(x) = \frac{1}{6} (1 - |x|^2)$. Then, in this case, $u \stackrel{u_0}{=} 0$ on $\partial\Omega$ if and only if u = 0 on ∂B .

3.2. Eigenvalue Problem

Now, we consider the eigenvalue problem

$$(REVP) \qquad \qquad \left\{ \begin{array}{l} -\Delta u = \lambda m(x)u \ on \ \Omega \\ u \stackrel{u_0}{=} 0 \ on \ \partial\Omega \end{array} \right.$$

For $m \equiv 1$ or m > 0, the problem is studied in ([BNV]) and ([Bi]). We assume here that $m \in C(\overline{\Omega})$, and there is $x \in \Omega$ such that m(x) > 0.

Theorem 4. : There exists a positive function ϕ_1 in $W_{loc}^{2,p}(\Omega)$, $\forall p < \infty$, called a "principal eigenfunction", and a positive real λ_1 , called "principal eigenvalue" satisfying

$$-\Delta\phi_1 = \lambda_1 m(x)\phi_1, \ \phi_1 \stackrel{u_0}{=} 0 \ on \ \partial\Omega.$$

The proof of this theorem can be found in [Le].

A similar result is shown in ([FlHeTh]), under the assumptions $m \in L^{\infty}(\Omega)$, and $\Omega^{+} = \{x \in \Omega | m(x) > 0\}$, $\Omega^{-} = \{x \in \Omega | m(x) < 0\}$ such that their Lebesgue measure $|\Omega^{+}| > 0$ and $|\Omega^{-}| > 0$

Consequence: if m changes of sign, there are two principal eigenvalues.

Remark: We know nothing about existence of other eigenvalues.

3.3. The case of systems

The existence of a principal eigenfunction can be extended to the case of some systems; let us consider :

$$(RCSP) \qquad \qquad \begin{cases} \begin{pmatrix} -\Delta & 0 \\ 0 & -\Delta \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \lambda \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} \quad in \ \Omega \\ u \stackrel{u_0}{=} 0 \quad and \ v \stackrel{u_0}{=} 0 \quad on \ \partial\Omega \end{cases}$$

The coefficients a, b, c, d are in $L^{\infty}(\Omega)$. We assume the existence of two positive numbers β and γ such that $b(x) \ge \beta$ and $c(x) \ge \gamma$.

Theorem 5. : There exists a positive vector $\begin{pmatrix} \phi_1 \\ \psi_1 \end{pmatrix}$ in $W^{2,p}_{loc}(\Omega)^2$, $\forall p < \infty$, called a "principal eigenvector", and a positive λ_1 , called "principal eigenvalue" satisfying

$$\left\{ \begin{array}{cc} \left(\begin{array}{cc} -\Delta & 0 \\ 0 & -\Delta \end{array} \right) \left(\begin{array}{c} \phi_1 \\ \psi_1 \end{array} \right) = \lambda_1 \left(\begin{array}{c} a & b \\ c & d \end{array} \right) \left(\begin{array}{c} \phi_1 \\ \psi_1 \end{array} \right) \ in \ \Omega \\ \phi_1 \stackrel{u_0}{=} 0 \ and \ \psi_1 \stackrel{u_0}{=} 0 \ on \ \partial \Omega \end{array} \right.$$

Acknowledgements

(Part of this work has been done under CTP project 99007446).

References

- [AC] B. ALZIARY, L. CARDOULIS, An Antimaximum Principle for a Schrödinger Equation in \mathbb{R}^2 with a Positive Weight Function, submitted to *Revista de Matematicas Aplicadas*, June 2003.
- [AlBe] B. ALZIARY, N. BESBAS Anti-Maximum Principle for cooperative system involving Schrödinger operator in $\mathbb{I}\!\mathbb{R}^N$. Monogr. Sem.Mat. "Garcia del Galdeano", 2003, n.27, 37-40
- [AlTa] B. ALZIARY, P. TAKÁČ A pointwise lower bound for positive solutions of a Schrödinger Equation in \mathbb{R}^N . J.Diff.Eq. 156, 1999, 122-152.
- [AlFITa] B. ALZIARY, J. FLECKINGER, P. TAKÁČ, An extension of maximum and antimaximum principles to a Schrödinger equation in *I*R², *J. Diff. Equat.*, *156* (1999), 122-152.
- [Be] N. BESBAS Groundstate positivity or negativity for systems of Schrödinger operators *Séminaire Analyse-E.D.P. 2002-2003*, MIP/ Ceremath , Université Toulouse 1 (to appear).
- [BNV] H. BERESTYCKI, L.NIRENBERG, S.R.S. VARADHAN, The principal eigenvalue and maximum principle for second order elliptic operators in general domains, *Comm. Pure Appl. Math* 47 (1994), 47-92
- [Bi] I. BIRINDELLI, Hopf's lemma and antimaximum principle in general domains, J. Diff. Equat., 119 (1995), 450–472.
- [CIPe] PH. CLÉMENT, L. A. PELETIER, An anti-maximum principle for second order elliptic operators, J. Differential Equations 34, 218-229, (1979).
- [FlGoTaTh] J. FLECKINGER, J.-P. GOSSEZ, P. TAKÁČ, F. DE THÉLIN, Existence, nonexistence et principe de l'antimaximum pour le *p*-laplacien, *Comptes Rendus Acad. Sc. Paris, Série I, 321* (1995), 731–734.
- [FlHeTh] J. FLECKINGER, J. HERNÁNDEZ, F. DE THÉLIN, On the existence of multiple Principal Eigenvalues for some indefinite Linear Eigenvalue problem, *Rev.Ac. Cien. Ser. A Mat.*, 97 (3), 2003,
- [H] P. HESS, An Antimaximum Principle for Linear Elliptic Equations with an Indefinite Weight Function, *J.Differential Equations 41* (1981), p.369-374.

- 20 Bénédicte Alziary, Naziha Besbas, Laure Cardoulis, Jacqueline Fleckinger, Marie-Hélène Lécureux
- [Le] M.H. LÉCUREUX-TÊTU Existence d'une solution au problème à poids indéfini pour la condition de Dirichlet raffinée *Séminaire Analyse-E.D.P. 2000-2002*, MIP/ Ceremath, Université Toulouse 1.
- [ReSi] M. REED, B. SIMON "Methods of modern mathematical physics", volume 4. Academic Press, New York, 1979.
- [Va] J. L. VÁZQUEZ, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191–202.

Bénédicte Alziary, Naziha Besbas, Laure Cardoulis, Jacqueline Fleckinger, Marie-Hélène Lécureux CEREMATH/MIP -UMR 5640-Université Toulouse 1 31042 TOULOUSE Cedex alziary@univ-tlsel.fr, ceremath@univ-tlsel.fr, jfleck@univ-tlsel.fr,