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Abstract. In this work we present a new numerical method to solve the linear Fredholm
integral equation of the second kind which is based on the use of Schauder bases and the
geometric series theorem.
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§1. Preliminaries

The aim of this work is to show a new numerical method to approximate the solution of the
linear Fredholm integral equation of the second kind

λu(x)−
∫ b

a

k(x, y)u(y) dy = f(x), (a ≤ x ≤ b),

where k : [a, b]× [a, b] −→ R and f : [a, b] −→ R are continuous functions and λ ∈ R \ {0}.
We propose a method which makes use of the classical Schauder basis for a suitable Banach
space and the geometric series theorem. It provides us a sequence of continuous functions
which approximates the solution of the equation.

Let us denote C([a, b]) (respectively C([a, b]2)) for the Banach space of all continuous and
real–valued functions defined on [a, b] (respectively [a, b] × [a, b]), endowed with its usual sup
norm ‖ ·‖∞ (respectively its usual sup norm ‖ ·‖∞). We shall also write C1([a, b]) (respectively
C1([a, b]2)) for the space of all functions of C1 class on [a, b] (respectively [a, b]× [a, b]).

Let (X, ‖ · ‖) be a Banach space. We will use the notation L(X) for the Banach space
of all the continuous linear operators from X to X with the usual operator norm, i.e., given
T ∈ L(X),

‖T‖ = sup
x∈X,‖x‖≤1

‖Tx‖.

Let us consider the linear integral operator

K : C([a, b]) −→ C([a, b])
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defined by

Ku(x) :=

∫ b

a

k(x, y)u(y) dy, (u ∈ C([a, b]), a ≤ x ≤ b) .

Then we can write the linear Fredholm integral equation of the second kind as

(λI −K)u = f.

To assure that there exists a unique solution of this integral equation, we make use of the
geometric series theorem (see [1]): let X be a Banach space, L ∈ L(X) and assume that
‖L‖ < 1. Then I − L is a bijection on X , its inverse is a bounded linear operator and

(I − L)−1 =
∞∑

n=0

Ln.

Consequently, let us write the integral equation in the following equivalent way:

(I − L)u = g,

where

L =
K

λ
, g =

f

λ
.

So if we assume (for the rest of this work) that ‖L‖ < 1, i.e.,

‖K‖ = max
a≤x≤b

∫ b

a

|k(x, y)| dy < |λ|,

then the integral equation has a unique solution which is given by

u = (I − L)−1g =
∞∑

n=0

Lng.

Therefore, if we consider the sequence {un}n≥1 of partial sums of this series, whose general
term is un =

∑n
k=0 Lkg, then the solution u is the limit of that sequence. However, for n ≥ 1,

the expression of Lng is

Lng(t1) =
1

λn

∫ b

a

n)· · ·
∫ b

a

k(t1, t2)k(t2, t3) · · · k(tn, tn+1)g(tn+1) dtn+1 · · · dt2, (t1 ∈ [a, b]),

which is quite difficult to obtain explicitly. To solve this problem we proceed as follows: we
equivalently write the sequence {un} as⎧⎨⎩

u0 = g

un = g + Lun−1 = g(·) +
1

λ

∫ b

a

k(·, y)un−1(y) dy, n ≥ 1
(1)

The integrand in the expression of un is a function in C([a, b]2). This function can be written
as an infinite series using an appropriate Schauder basis for that Banach space. After that, we
consider an approximation of un truncating the previous series.
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To this end, let us recall (see [3]) that a Schauder basis in a Banach space X is a sequence
{sn}n≥1 in X satisfying that for all x ∈ X there exists a unique sequence {an}n≥1 of scalars
such that

x =
∑
n≥1

ansn.

For such a basis and for each positive integer k, the kth biorthogonal functional s∗k associated
to {sn}n≥1 is the continuous linear functional from X to R that provides us the kth coefficient
of the series, i.e.,

s∗k

(∑
n≥1

ansn

)
= ak

and the kth natural projection Pk associated to {sn}n≥1 is the continuous linear operator from
X to X that gives us the kth partial sum of the series, i.e.,

Pk

(∑
n≥1

ansn

)
=

k∑
n=1

ansn.

Now let {ti : i ≥ 1} be a dense subset of distinct points in [a, b], with t1 = a and t2 = b.
Then the classical Schauder basis {bn}n≥1 for C([a, b]) associated with such points is given in
the following way:

b1(t) = 1, ∀t ∈ [a, b]

and for j ≥ 2, bj is the function from [a, b] to R whose graph is the polygonal passing through
the points (t1, 0), . . . (tj−1, 0), (tj, 1).

Finally, the classical Schauder basis {Bn}n≥1 for the Banach space C([a, b]2) is given by
the following expression (see [2] and [4]):

Bn(x, y) = bτ1(n)(x)bτ2(n)(y), (x, y ∈ [a, b]),

where τ = (τ1, τ2) : N −→ N× N is the bijective mapping defined by

τ(n) :=

⎧⎨⎩
(
√

n,
√

n), if [
√

n] =
√

n
(n− [

√
n]2, [

√
n] + 1), if 0 < n− [

√
n]2 ≤ [

√
n]

([
√

n] + 1, n− [
√

n]2 − [
√

n]), if [
√

n] < n− [
√

n]2

being [x] = max{k ∈ Z : k ≤ x}, (x ∈ R).
If we define

Φ(x, y) := k(x, y)v(y), (x, y ∈ [a, b], v ∈ C([a, b])),

then

Φ(x, y) =
∞∑

n=1

B∗
n(Φ)Bn(x, y). (2)

Therefore, the image of a continuous function v under the integral operator L is easily obtained
(using (2), the uniform convergence of the previous series and the linearity of the integral) as
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follows:

(Lv)(x) =
1

λ

∫ b

a

Φ(x, y) dy =

=
1

λ

∫ b

a

( ∞∑
n=1

B∗
n(Φ)Bn(x, y)

)
dy =

=
1

λ

( ∞∑
n=1

B∗
n(Φ)

∫ b

a

Bn(x, y) dy

)
=

=
1

λ

∞∑
n=1

(
B∗

n(Φ)bτ1(n)(x)

∫ b

a

bτ2(n)(y) dy

)
.

In the following, {Pn}n≥1 will denote the sequence of natural projections associated to the
basis {Bn}n≥1.

The next result, consequence of some elementary properties of the basis {Bn}n≥1 and the
mean value theorem, estimates the difference of a function and its nth natural projection.

Proposition 1. Let ϕ ∈ C1([a, b]2) and

M := max

{∥∥∥∥∂ϕ

∂x

∥∥∥∥
∞

,

∥∥∥∥∂ϕ

∂y

∥∥∥∥
∞

}
.

Suppose that M �= 0 (otherwise the statement is trivially satisfied). Given ε > 0, {ti}i≥1 a
dense subset of distinct points in [a, b], for all n ≥ 2, we note ∆n := {a = x1 < x2 < . . . <
xn−1 < xn = b} the points {t1, . . . , tn} ordered in an increasing way and assume that

max
i=2,···,n

(xi − xi−1) <
ε

4M
,

then

‖ϕ− Pn2(ϕ)‖∞ ≤ ε.

§2. Numerical method

The geometric series theorem provides us the sequence {un}n≥1 which converges uniformly on
[a, b] to the solution u of the linear Fredholm integral equation of the second kind. In the next
theorem we present an approximation of the function un, using for that purpose the sequence
of natural projections {Pn}n≥1.
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Theorem 2. Let k ∈ C([a, b]2), g ∈ C([a, b]), λ ∈ R\{0} and the corresponding Fredholm in-
tegral operator L. Let us consider m ∈ N, n1, . . . , nm ∈ N and for i = 1, . . . , m we inductively
define the functions

ũi(x) := g(x) +
1

λ

∫ b

a

Pni
(k(x, y)ũi−1(y)) dy, (x ∈ [a, b]),

where ũ0 = g. For all i = 1, . . . , m, let εi > 0 and assume that

‖(g + Lũi−1)− ũi‖∞ < εi.

Then

‖u− ũm‖∞ ≤ ‖g‖∞
‖L‖m+1

1− ‖L‖ +
m∑

i=1

εi,

where u is the solution of the Fredholm integral equation.

Proof. Using the triangular inequality, we obtain

‖u− ũm‖∞ ≤ ‖u− um‖∞ + ‖um − ũm‖∞. (3)

On the one hand,

‖u− um‖∞ =

∥∥∥∥∥∑
j≥0

Ljg −
m∑

j=0

Ljg

∥∥∥∥∥
∞

=

∥∥∥∥∥ ∑
j≥m+1

Ljg

∥∥∥∥∥
∞

≤
∑

j≥m+1

∥∥Ljg
∥∥
∞ ≤

≤
∑

j≥m+1

‖L‖j‖g‖∞ = ‖g‖∞
( ∑

j≥m+1

‖L‖j

)
= ‖g‖∞

‖L‖m+1

1− ‖L‖ .

(4)

And on the other hand,

‖um − ũm‖∞ ≤ ‖um − (g + Lũm−1)‖∞ + ‖(g + Lũm−1)− ũm‖∞ ≤

≤ ‖g + Lum−1 − g − Lũm−1‖∞ + εm =

= ‖L(um−1 − ũm−1)‖∞ + εm <

< ‖um−1 − ũm−1‖∞ + εm.

If we recurrently repeat the previous process, we have that

‖um − ũm‖∞ ≤
m∑

i=1

εi. (5)

Now, substituting the upper bounds (4) and (5) in (3), we conclude the proof.

Finally, with the next proposition we pretend to complete the previous theorem in order to
determine which natural numbers n1, . . . , nm must be taken.
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Proposition 3. Let us consider k ∈ C1([a, b]2), g ∈ C1([a, b]), λ ∈ R \ {0} and the functions
{ũn}n≥1 defined in Theorem 2. We assume that for p ∈ N, Mp �= 0, where

Mp := max

{∥∥∥∥∂k

∂x

∥∥∥∥
∞
‖ũp−1‖∞,

∥∥∥∥∂k

∂y

∥∥∥∥
∞
‖ũp−1‖∞ + ‖k‖∞‖ũ′

p−1‖∞
}

.

Given εp > 0, fix np ≥ 2 and suppose that ∆np = {a = x1 < x2 < . . . < xnp−1 < xnp = b}
satisfies that

max
i=2,···,np

(xi − xi−1) <
εp|λ|

4Mp(b− a)
.

Then
‖(g + Lũp−1)− ũp‖∞ ≤ εp.

Proof. Since
∂(k(x, y)ũp−1(y))

∂x
(x, y) =

∂k

∂x
(x, y)ũp−1(y)

and
∂(k(x, y)ũp−1(y))

∂y
(x, y) =

∂k

∂y
(x, y)ũp−1(y) + k(x, y)ũ′

p−1(y),

then

max

{
‖∂(k(x, y)ũp−1(y))

∂x
‖∞, ‖∂(k(x, y)ũp−1(y))

∂y
‖∞
}
≤ Mp .

Now, applying Proposition 1 for x ∈ [a, b], we obtain

|(g + Lũp−1)(x)− ũp(x)| =
∣∣∣∣1λ
∫ b

a

(
k(x, y)ũp−1(y)− Pnp(k(x, y)ũp−1(y))

)
dy

∣∣∣∣ ≤
≤ b− a

|λ| ‖k(x, ·)ũp−1(·)− Pnp(k(x, ·)ũp−1(·))‖∞ ≤ b− a

|λ|
|λ|

b− a
εp = εp.

Finally, since x is arbitrary in [a, b],

‖(g + Lũp−1)− ũp‖∞ ≤ εp,

as required.

§3. Numerical example

In this section we approximate the solution of the integral equation

5u(x)−
∫ 1

0

exyu(y) dy = f(x), (0 ≤ x ≤ 1) (6)

using our method and compare our results with those one given by the classical collocation
method (see [1]).
First of all, we note that this integral equation has a unique solution because of

‖K‖ = e− 1 < 5 = |λ|.
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Let us consider the functions

u(1)(x) = e−x cos x, u(2)(x) =
√

x, (0 ≤ x ≤ 1)

as exact solutions of the equation (6) and obtain f(x) accordingly. For i = 1, 2, we denote

E(i)
n = max

1≤j≤n+1

∣∣u(i)(xj)− u(i)
n (xj)
∣∣ ,

where u
(i)
n (x) is the approximation of the exact solution u(i)(x) given by the collocation method

and {xj}n+1
j=1 are the nodes of this method.

To compare these results with those one obtained by our method, we proceed as follows: in the
definition of the classical Schauder basis for C([0, 1]) we consider the dense subset

{0, 1, 1

2
,
1

4
,
3

4
, . . . ,

1

2k
,

3

2k
, . . . ,

2k − 1

2k
, . . .}.

Fixed k, the set

{0, 1, 1

2
,
1

4
,
3

4
, . . . ,

1

2k
,

3

2k
, . . . ,

2k − 1

2k
}

coincides with the nodes of the collocation method for n = 2k, and the cardinal of this set is
n + 1. We take the values n1, . . . , nm in Theorem 2 as n1 = . . . = nm = n + 1. We also denote
ũ

(i)
n,p(x) for the approximation, obtained by our numerical method, of the exact solution u(i)(x).

The natural number p specifies the number of iterations for each fixed n. For each iteration we
denote

F (i)
n,p = max

1≤j≤n+1

∣∣u(i)(xj)− ũ(i)
n,p(xj)
∣∣ .

To determine this number p, we have established the criterion of choosing p such that

F
(i)
n,p

F
(i)
n,p+1

< 1 + 10−2.

The results we have obtained when programming both methods are presented in the following
tables:

n p E
(1)
n F

(1)
n,p

n = 8 p = 9 3.27× 10−4 2.55× 10−4

n = 16 p = 10 8.18× 10−5 6.36× 10−5

n = 32 p = 11 2.04× 10−5 1.58× 10−5

n p E
(2)
n F

(2)
n,p

n = 8 p = 7 2.75× 10−3 2.09× 10−3

n = 16 p = 8 9.65× 10−4 7.62× 10−4

n = 32 p = 9 3.40× 10−4 2.76× 10−4
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