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ON EFFICIENT ALGORITHMS FOR

POLYNOMIAL EVALUATION IN CAGD

Jorge Delgado and Juan Manuel Peña

Abstract. For evaluating polynomial curves in computer design the usual algorithm is the
de Casteljau algorithm. Although it is simple and stable, this algorithm is not efficient,
in the sense that it has not linear complexity. In this paper we discuss and compare the
properties of four more efficient algorithms used under some circumstances as alternative
to the de Casteljau algorithm.
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§1. Introduction

Let U be a vector space of real functions defined on a real interval I and (u0(t), . . . , un(t))
(t ∈ I) a basis of U . Given a sequence P0, . . . , Pn of points in Rk we can define a curve

γ(t) =
n∑

i=0

Pi ui(t), t ∈ I.

The points P0, . . . , Pn are called control points and the corresponding polygon P0 · · ·Pn is
called the control polygon of γ. In Computer Aided Geometric Design the functions u0, . . . , un

are usually nonnegative and
∑n

i=0 ui(t) = 1 ∀t ∈ [a, b] (i.e. the system (u0, . . . , un) is nor-
malized) and in this case we say that (u0, . . . , un) is a blending system. The convex hull prop-
erty is an important property for interactive design: for any control polygon, the curve always
lies in the convex hull of the control polygon. The convex hull property holds if and only if
(u0, . . . , un) is a blending system.

These geometric properties correspond to some properties concerning the collocation ma-
trices of the system of functions. The collocation matrix of (u0(t), . . . , un(t)) at t0 < · · · < tm
in I is given by

M

(
u0, . . . , un

t0, . . . , tm

)
:= (uj(ti))i=0,...,m;j=0,...,n. (1)

Clearly, (u0, . . . , un) is blending if and only if all its collocation matrices are stochastic (that
is, nonnegative and such that the sum of the elements of each row is 1). In interactive design
we also want that the shape of a parametrically defined curve mimics the shape of its control
polygon; thus we can predict or manipulate the shape of the curve by choosing or changing the
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control polygon suitably. In order to assure this property, we have to require more properties
to the collocation matrices (1). A matrix is totally positive of order r (TPr) if all its k × k
minors, k = 1, . . . , r, are nonnegative. A matrix is totally positive (TP ) if all its minors are
nonnegative. Obviously, a n × n TP matrix is TPi for all i ∈ {1, . . . , n}. More properties
on TP matrices can be seen in [1]. A system of functions is TPr (respectively TP ) when
all its collocation matrices (1) are TPr (respectively TP ). In case of a normalized totally
positive (NTP) basis one knows that the curve imitates the shape of its control polygon, due
to the variation diminishing properties of TP matrices (see [17]). In fact, the shape preserving
representations are associated with NTP bases.

In CAGD the usual representation of a polynomial curve is the Bernstein-Bézier form:

γ(t) =
n∑

i=0

Pi b
n
i (t), t ∈ [0, 1],

where bn
i (t) =

(
n
i

)
ti(1−t)n−i i = 0, . . . , n is the Bernstein basis (see [15] and [12]). This repre-

sentation presents optimal shape preserving properties (see [5]). Curves in the Bernstein-Bézier
form are usually evaluated by using the de Casteljau algorithm. The de Casteljau algorithm is a
corner cutting algorithm, that is, an algorithm such that each step consist of obtaining a polyg-
onal arc by cutting corners from another polygonal arc (see [5]). Corner cutting algorithms are
useful because they have good stability properties (see [16]).

In spite of the nice properties of the de Casteljau algorithm, its computational cost to eval-
uate a polynomial curve of degree n is quadratic (that is, of O(n2) elementary operations).
There are some circumstances, frequently in the surfaces design (see [14] and [20]), where it
is convenient to use polynomial evaluation algorithms with less computational cost than the de
Casteljau algorithm. This has stimulated in the last two decades the research of new algorithms
for the polynomial evaluation which are useful in CAGD (see [10],[18],[19],[23],[21],[6],[7]
and [22]). In fact, there are other evaluation algorithms useful in design whose computational
cost to evaluate a polynomial curve of degree n is linear (that is, of O(n) elementary oper-
ations). In this paper we will present some of these alternative algorithms. Schumaker and
Volk presented in [19] an alternative algorithm to the de Casteljau algorithm for evaluating
polynomials in the Bernstein-Bézier form. We show this algorithm in Section 2. In [2], [3]
and [4] Ball presented a basis of the space of polynomials of degree less than or equal to 3 on
[0, 1]. Two different generalized Ball bases of higher degree were obtained by Said and Wang
independently in [18] and [23] respectively. Both bases present evaluation algorithms with less
computational cost than the de Casteljau algorithm. We present the properties of the Wang-Ball
and Said-Ball bases and their evaluation algorithms in sections 3 and 4 respectively. In section
5 we present another basis introduced in [10] whose evaluation algorithm associated has lin-
ear time complexity. Finally, in section 6 we present a summary of the properties satisfied
by the algorithms considered mentioned along the paper, that is, the computational cost of the
algorithm, kind of algorithm and shape preserving properties of the associated basis.

§2. The VS algorithm

In [19] Schumaker and Volk proposed a new algorithm to evaluate multivariate polynomials
in the Bernstein-Bézier representation. Here, we particularize this algorithm to the univariate
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case. Let γ(t) =
∑m

i=0 Vi

(
m
i

)
ti(1−t)m−i be a polynomial in the Bernstein-Bezier form. Taking

Pi =
(

m
i

)
Vi for i = 0, . . . , m, we can write

γ(t) =
m∑

i=0

Pi t
i(1− t)m−i, t ∈ [0, 1].

This representation is called Bernstein-Bézier modified representation.

Definition 1. Let (zm
0 (t), . . . , zm

m(t)), m ≥ 2, t ∈ [0, 1], be the VS basis, defined by zm
i (t) =

ti(1− t)m−i.

The VS basis has the following evaluation algorithm associated which was presented by
Schumaker and Volk (see [19]):

Algorithm 1

Let γ(t) =
∑m

i=0 Pi z
m
i (t) and t ∈ [0, 1].

1.− If t ≥ 1/2

perform step 2

else

perform step 3

End-If.

2.− coc = 1−t
t

A = P0

For i = 1, m step 1

A = A ∗ coc + Pi

End-For

γ(t) = A× tm

3.− coc = t
1−t

.

A = Pm

For i = 1, m step 1

A = A ∗ coc + Pm−i

End-For

γ(t) = A× (1− t)m.

We can easily checked that the algorithm consists of m sums, 2m products and one quotient,
so that it has linear complexity. In addition, since the system (zm

0 , . . . , zm
m) coincides up to

scaling with the Bernstein basis (bm
0 , . . . , bm

m) we can conclude that (zm
0 , . . . , zm

m) is also TP .
However, as we can observe in Algorithm 1, the VS algorithm is not a corner cutting algorithm.

§3. The Wang-Ball algorithm

The Wang-Ball basis was presented by Wang in [23] as a generalization of the Ball basis (see
[2], [3] and [4]). In addition, the Wang-Ball basis has been also considered in [21] and [6]. Let
us recall the definition of the Wang-Ball basis.
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Definition 2. Let (am
0 (t), . . . , am

m(t)), m ≥ 2, t ∈ [0, 1], be the Wang-Ball system, defined by:

am
i (t) = 2iti(1− t)i+2, 0 ≤ i ≤

⌊
m
2

⌋
− 1,

am
i (t) = 2m−itm+2−i(1− t)m−i,

⌊
m+1

2

⌋
+ 1 ≤ i ≤ m.

In addition, if m is even,

am
m
2
(t) = 2

m
2 t

m
2 (1− t)

m
2 ,

and, if m is odd,

am−1
2

(t) = 2
m−1

2 t
m−1

2 (1− t)
m+1

2 , am+1
2

(t) = 2
m−1

2 t
m+1

2 (1− t)
m−1

2 ,

where �r� (r > 0) is the greatest positive integer less than or equal to r.

The Wang-Ball basis has the following evaluation algorithm associated, which was pre-
sented in [21].

Algorithm 2

Let γ(t) =
∑m

i=0 Pi a
m
i (t) and t ∈ [0, 1].

1.− For i = 0, . . . , m

f 0
i (t) = Pi

End-For.

2.− For k = m, . . . , 3 step= −1

If k is odd

fm+1−k
i (t) = fm−k

i (t), 0 ≤ i ≤ k−3
2

,

fm+1−k
k−1
2

(t) = (1− t)fm−k
k−1
2

(t) + tfm−k
k+1
2

(t),

fm+1−k
i (t) = fm−k

i+1 (t), k+1
2
≤ i ≤ k − 1,

else

fm+1−k
i (t) = fm−k

i (t), 0 ≤ i ≤ k
2
− 2,

fm+1−k
k
2
−1

(t) = (1− t)fm−k
k
2
−1

(t) + tfm−k
k
2

(t),

fm+1−k
k
2

(t) = (1− t)fm−k
k
2

(t) + tfm−k
k
2
+1

(t),

fm+1−k
i (t) = fm−k

i+1 (t), k
2

+ 1 ≤ i ≤ k − 1,

End If

End-For.

3.− fm−1
0 (t) = (1− t)fm−2

0 (t) + tfm−2
1 (t)

fm−1
1 (t) = (1− t)fm−2

1 (t) + tfm−2
2 (t)

fm
0 (t) = (1− t)fm−1

0 (t) + tfm−1
1 (t)

then, fm
0 (t) = γ(t).
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We can easily check that the previous algorithm consists, if m is even, of 3
2
m sums and 3m

products and, if m is odd, of 1
2
(3m − 1) sums and 3m − 1 products. In addition, as we can

observe, Algorithm 2 is a corner cutting algorithm and so it will have good stability properties.
Besides, the Wang-Ball basis is blending. However, by Theorem 3.7 of [8], the Wang-Ball
basis is not TP2. Therefore we cannot expect that this representation satisfies strong shape
preserving properties.

§4. The Said-Ball algorithm

Another generalized Ball basis is the Said-Ball basis. The Said-Ball basis was defined by Said
in [18] for the space of polynomials of degree at most m with odd m. Goodman and Said
proved in [13] the total positivity of this family of bases. Later, Shi-Min Hu, Guo-Zhao Wang
and Tong-Guang Jin suggested in [21] an extension of this family to the case of polynomials of
degree at most m with even m. Let us present this complete family of bases:

Definition 3. The Said-Ball basis (sm
0 (t), . . . , sm

m(t)), m ≥ 1, t ∈ [0, 1], is defined by:

sm
i (t) =

(⌊
m
2

⌋
+ i

i

)
ti(1− t)�m

2 �+1, 0 ≤ i ≤
⌊

m− 1

2

⌋
,

sm
i (t) =

(⌊
m
2

⌋
+ m− i

m− i

)
t�m

2 �+1(1− t)m−i,
⌊m

2

⌋
+ 1 ≤ i ≤ m,

and, if m is even

sm
m
2
(t) =

(
m
m
2

)
t

m
2 (1− t)

m
2 .

The Said-Ball basis has the following evaluation algorithm associated, which was presented
in [21].

Algorithm 3

Let γ(t) =
∑m

i=0 Pi s
m
i (t) and t ∈ [0, 1].

1.− For i = 0, . . . , m

f 0
i (t) = Pi

End For.

2.− For k = m, . . . , 3 step= −1
If k is odd

fm+1−k
i (t) = fm−k

i (t), 0 ≤ i ≤ k−3
2

,

fm+1−k
k−1
2

(t) = (1− t)fm−k
k−1
2

(t) + tfm−k
k+1
2

(t),

fm+1−k
i (t) = fm−k

i+1 (t), k+1
2
≤ i ≤ k − 1,

else

For i = 0, . . . , k

g0,k
i (t) = fm−k

i (t)

End For.
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g1,k
i (t) = g0,k

i (t), 0 ≤ i ≤ k
2
− 2,

g1,k
k
2
−1

(t) = (1− t)g0,k
k
2
−1

(t) + tg0,k
k
2

(t),

g1,k
k
2

(t) = (1− t)g0,k
k
2

(t) + tg0,k
k
2
+1

(t),

g1,k
i (t) = g0,k

i+1(t),
k
2

+ 1 ≤ i ≤ k − 1,

For j = k
2
− 1, . . . , 1 step= −1

g
k
2
+1−j,k

i (t) = g
k
2
−j,k

i (t), 0 ≤ i ≤ j − 2,

g
k
2
+1−j,k

j−1 (t) = (1− t)g
k
2
−j,k

j−1 (t) + tg
k
2
−j,k

j (t),

g
k
2
+1−j,k

i (t) = g
k
2
−j,k

i (t), j ≤ i ≤ k − j − 1,

g
k
2
+1−j,k

k−j (t) = (1− t)g
k
2
−j,k

k−j−1(t) + tg
k
2
−j,k

k−j (t),

g
k
2
+1−j,k

i (t) = g
k
2
−j,k

i (t), k − j + 1 ≤ i ≤ k − 1,

End-For

fm+1−k
i (t) = g

k
2
,k

i (t), 0 ≤ i ≤ k − 1

End-If

End-For.

3.− fm−1
0 (t) = (1− t)fm−2

0 (t) + tfm−2
1 (t)

fm−1
1 (t) = (1− t)fm−2

1 (t) + tfm−2
2 (t)

fm
0 (t) = (1− t)fm−1

0 (t) + tfm−1
1 (t)

then, fm
0 (t) = γ(t).

We can easily check that the previous algorithm consists, if m is even, of m
2

(
m
2

+ 2
)

sums

and m
(

m
2

+ 2
)

products and, if m is odd, of (m+1)2

4
sums and (m+1)2

2
products. It has less

computational cost than the de Casteljau algorithm (see [21]). In addition, as we can observe,
Algorithm 3 is a corner cutting algorithm and so it will have good stability properties. Finally,
by Proposition 3 of [9], the Said-Ball basis is NTP and so the curves represented in the Said-
Ball basis imitate the shape of its corresponding control polygons (recall that this was proved
in [13] only for the case when m is odd).

§5. Another basis with a linear complexity evaluation algorithm

In [10] Delgado and Peña introduced another basis with an evaluation algorithm associated of
linear complexity. Let us recall the definition of this basis.

Definition 4. Let (cm
0 (t), . . . , cm

m(t)), m ≥ 2, be the system of polynomials on [0, 1] defined
by:

cm
0 (t) = (1− t)m,

cm
i (t) = t(1− t)m−i, 1 ≤ i ≤

⌊m
2

⌋
− 1,
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cm
i (t) = ti(1− t),

⌊
m + 1

2

⌋
+ 1 ≤ i ≤ m− 1,

cm
m(t) = tm.

In addition, if m is even,

cm
m
2
(t) = 1− t

m
2

+1 − (1− t)
m
2

+1,

and, if m is odd,

cm
m−1

2
(t) = t(1− t)

m+1
2 +

1

2

[
1− t

m+1
2 − (1− t)

m+1
2

]
,

cm
m+1

2
(t) =

1

2

[
1− t

m+1
2 − (1− t)

m+1
2

]
+ t

m+1
2 (1− t).

Let us observe that, for m = 2, the previous system coincides with the Bernstein basis on
[0, 1]. More properties of this basis can be seen in [10].

In [10] the authors also present the following evaluation algorithm associated to the repre-
sentation corresponding to this basis.

Algorithm 4

Let γ(t) =
∑m

i=0 Pi c
m
i (t) and t ∈ [0, 1].

1.− For i = 0, 1, . . . , m

f 0
i (t) = Pi

End-For.

2.− If m ≥ 3 and m is odd

f 1
0 (t) = (1− t)f 0

0 (t) + tf0
1 (t),

f 1
i (t) = f 0

i+1(t), 1 ≤ i ≤ m−3
2

,

f 1
m−1

2

(t) = 1
2
f 0

m−1
2

(t) + 1
2
f 0

m+1
2

(t),

f 1
i (t) = f 0

i (t), m+1
2
≤ i ≤ m− 2,

f 1
m−1(t) = (1− t)f 0

m−1(t) + tf0
m(t),

else if m ≥ 3 and m is even

f 1
0 (t) = (1− t)f 0

0 (t) + tf0
1 (t),

f 1
i (t) = f 0

i+1(t), 1 ≤ i ≤ m
2
− 1,

f 1
i (t) = f 0

i (t), m
2
≤ i ≤ m− 2,

f 1
m−1(t) = (1− t)f 0

m−1(t) + tf0
m(t),

End-If.

3.− For k = m− 1, . . . , 3 step= −1

If k is odd

fm+1−k
0 (t) = (1− t)fm−k

0 (t) + tfm−k
1 (t),

fm+1−k
i (t) = fm−k

i+1 (t), 1 ≤ i ≤ k−1
2

,

fm+1−k
i (t) = fm−k

i (t), k+1
2
≤ i ≤ k − 2,
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fm+1−k
k−1 (t) = (1− t)fm−k

k−1 (t) + tfm−k
k (t),

else

fm+1−k
0 (t) = (1− t)fm−k

0 (t) + tfm−k
1 (t),

fm+1−k
i (t) = fm−k

i+1 (t), 1 ≤ i ≤ k
2
− 1,

fm+1−k
i (t) = fm−k

i (t), k
2
≤ i ≤ k − 2,

fm+1−k
k−1 (t) = (1− t)fm−k

k−1 (t) + tfm−k
k (t),

End-If
End-For.

4.− fm−1
0 (t) = (1− t)fm−2

0 (t) + tfm−2
1 (t)

fm−1
1 (t) = (1− t)fm−2

1 (t) + tfm−2
2 (t)

fm
0 (t) = (1− t)fm−1

0 (t) + tfm−1
1 (t)

then, fm
0 (t) = γ(t).

In Remark 2 of [10] was checked that, when m is odd, the number of sums is 2m and the
number of multiplications is 4m and, when m is even, the number of sums is 2m − 1 and the
number of multiplications is 4m − 2. Besides, Algorithm 4 is a corner cutting algorithm and
so it will present good stability properties. In addition, by Theorem 5 and Theorem 6 of [10],
the system (cm

0 , . . . , cm
m) is NTP for all m ≥ 2. Thus, the curves represented in the system

(cm
0 , . . . , cm

m) imitate the shape of its corresponding control polygons.

§6. Conclusion

We show in Table 1 a comparison of the results of sections 2, 3, 4 and 5. As we can see, the de
Casteljau algorithm is a corner cutting algorithm but it has not linear time complexity. On the
other hand, the Bernstein basis, which is the basis associated to the de Casteljau algorithm, is
NTP and so, this representation is shape preserving. We can also see in Table 1 that the VS
basis is TP (although it is not NTP , a scaling produces the Bernstein basis which is NTP )
and the VS algorithm, which is its associated algorithm, has linear time complexity but it is
not a corner cutting algorithm. Again, in Table 1 we can see that the Wang-Ball algorithm has
linear time complexity and, in addition, it is a corner cutting algorithm. But its associated basis,
that is, the Wang-Ball basis, is not TP . The another generalised Ball basis, that is, the Said-
Ball basis, is NTP . In addition, its corresponding evaluation algorithm, that is the Said-Ball
algorithm, is a corner cutting algorithm, but it has not linear complexity although it has less
computational cost than the de Casteljau algorithm. Finally, the basis introduced by the authors
satisfies simultaneously all these good properties, that is, it is NTP , its associated evaluation
algorithm has linear time complexity and is a corner cutting algorithm. In [11] it has been used
for rational curves evaluation and in a future research it will be used for surfaces design.
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