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Abstract

In this communication we analyze the nonlinear stability of pseudo-rigid motions

constituted by similarity transformations which leave a point of the mechanical

systems fixed. For this we apply the energy-momentum method to a class of relative

equilibria formed by upright motions of a deformable Lagrangian top modelled by

a Saint Venant-Kirchhoff material.
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1 Introduction

The dynamics of deformable three-dimensional bodies can be approached using the theory

of pseudo-rigid bodies proposed by Cohen and Muncaster [1] and S lawianowski [2]. In

this theory the configuration space of an elastic body, given by the diffeomorphism group,

is replaced by the linear group so that the equations of balance are transformed into

ordinary differential equations. The finite-dimensional dynamical system corresponding

to a pseudo-rigid motion has the structure of a Hamiltonian system with symmetries

and for a certain class of motions which leave the rotation axis fixed, the corresponding

steady motions and its orbital stability have been studied by Cohen and Muncaster [1],

in the case of linear stability, and by Lewis and Simo [3] the nonlinear stability using the

energy-momentum method.

Let us consider the most general class of motions formed by affine motions such that

a point remains fixed throughout the motion, and study, in particular, the evolution of a

deformable asymmetric spinning top where one of the principal axes is vertical and the
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angular velocity about that axis increases monotonically. This motion is interesting be-

cause a top in unstable motion can be gyroscopically stabilized when the velocity increases

beyond certain critical value.

The aim of this communication is to determine a set of values of the angular velocity

for which the motion is nonlinearly stable for motions given by similarity transformations

with a fixed point. This communication is organized as follows: in the forthcoming section

the mechanical system and the reduction of the problem to a submanifold of the phase

space is examined. Then, in section 3, the relative equilibria and its nonlinear stability

properties are derived by means of the reduced energy-momentum method.

2 Symmetries and reduction

Consider a continuum medium in R3. Let D be the closure of an open set in R3 that

represents the reference configuration of the medium at the time t = 0. Denote by X ∈ D

the material points in D. The instantaneous configuration of D at an arbitrary time t

is a mapping ϕt : D → R3 which is smooth, orientation preserving, and invertible on its

image. The spatial points of ϕt(D) ⊂ R3 are denoted by x(t). The motion of D is given

by the time dependent family of configurations

x(t) = ϕt(X). (1)

Let us assume that point Ot = ϕt(O), for a point O ∈ D, remains fixed at the origin for

all values of time t. Then the motion of D is

x(t) = F (t)X (or simply, x = FX). (2)

The condition that the motion is carried out through similarity transformations means

that the matrix representation F of the configuration may be factorized, by the polar

decomposition, in the form

F = UR, (3)

where U is a symmetric matrix proportional to the 3 × 3 unity matrix, 1, and R is an

orthogonal matrix, so that the configuration space for similarity motions with a fixed

point is the Lie group Q := R+SO(3)

Q = {F | F = UR, U = u1, (u ∈ R+), R ∈ SO(3)}. (4)

The material distribution at the reference configuration is characterized by the matter

density %(X) and the Euler tensor

E :=

∫
D

%(X) X ⊗X dX, (5)
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which determines a Riemannian metric on the phase space M := T ∗Q, whose elements

will be denoted by (F, P ), defined by the kinetic energy

K(P ) := 1
2

Tr(PE−1P T ).

We assume that the external forces derive from a potential function U : Q→ R:

U(F ) := V (F ) + W (F ),

where V (F ) and W (F ) are associated to the gravitational and elastic forces, respectively.

The gravitational force when referred to an orthonormal frame {e1, e2, e3} on R3 is given

by a vector g = ge3, and acts only on the centre of mass, x, of the continuum medium,

the gravitational potential being

V (F ) = e3 · x = e3 · FX. (6)

On the other hand, in order to describe the elastic properties of the continuum medium

we consider a Saint Venant-Kirchhoff hyperelastic model for which the potential function

is given by

W (F ) = 1
2

(
Tr(C − 1)

)2
+ µ Tr(C − 1)2, (7)

where C := F T F is the Cauchy-Green strain tensor and λ, µ are the Lamé coefficients

satisfying the conditions

ν > 0 and 3λ + 2µ > 0. (8)

We choose this model because it is one of the simplest models that exhibit nonlinear

response.

The mechanical system (M, H), with Hamiltonian function

H : M→ R, H(F, P ) = K(P ) + U(F ), (9)

is left invariant under spatial rotations that preserve the gravity vector g. Therefore, the

symmetry group is the abelian group

G := {exp(sê3) | s ∈ R} ' S1, (10)

ê3 being the skew-symmetric matrix associated to the vector e3, and its Lie algebra is

g = {sê3 | s ∈ R} ' R, whose dual space, g∗, is also isomorphic to R.

For every vector ξ ∈ g the infinitesimal generator associated to ξ by means of the

G–action on Q is

ξQ(F ) :=
d

dt

∣∣∣∣
t=0

exp(tξ ê3) · F = ξê3F ∈ TF Q, (11)
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and for the corresponding momentum map,

J : M→ g∗, 〈J(F, P ), ξ〉 = 〈P, ξQ(F )〉, (12)

one obtains

J(F, P ) = Tr(FP T ê3), (13)

where the duality pairing is defined in the usual form 〈A, B〉 := Tr(AT B). The constant

momentum constrain given by Nöther’s theorem states that a trajectory
(
F (t), P (t)

)
with

momentum µe stays on the submanifold J−1(µe) ⊂M.

Furthermore, the submanifold J−1(µe) can be identified with the set of zero momentum

J−1(0) ⊂ M through the locked inertia tensor I(F ) defined by means of the following

commutative diagram

ν ∈ g
ΨF−−−→ TqQ 3 νQ(F )

I(F )

y yFLF

g∗ ←−−−
J(F,·)

T ∗
F Q

(14)

where ΨF is the map that assigns, to each ξ ∈ g, the infinitesimal generator ξQ(F ) on

Q given in (11), FL denotes the Legendre transformation and J(F, ·) is defined by (13).

Therefore the locked inertia tensor takes the form

I(F )·ξ = ξ Tr(FEF T êT
3 ê3) ∈ g. (15)

Then, for a configuration F ∈ Q the locked velocity field is defined by the map ξ : M→ g

given by

(F, P ) 7→ ξ(F, P ) = I−1J(F, P ) =
Tr(FP T ê3)

Tr(FEF T êT
3 ê3)

ê3, (16)

and the corresponding momentum is

PJ := FL
(
ξ(F, P )Q(F )

)
=

Tr(FP T ê3)

Tr(FEF T êT
3 ê3)

ê3FE. (17)

Then, the identification between J−1(µe) and J−1(0) is derived taking into account that for

every momentum P one can obtain a corresponding momentum (the shifted momentum)

on J−1(0) as P̃ := P − PJ , and in the new variables (F, P̃ ) on J−1(0) the functional

energy-momentum defined as ([4])

Hµe : M× g→ R,
(
(F.P ), ξe

)
7→ H(F, P )−

(
J(F, P )− µe

)
· ξ, (18)

is reduced to

hµe : J−1(0)→ R, (F, P̃ ) 7→ 1
2
‖P̃‖2E + Vµe , (19)

where Smale’s amended potential Vµe(F ) defined on the configuration space takes here

the form

Vµe = U(F ) + 1
2
µ2

e[Tr(FEF T êT
3 ê3)]

−1. (20)
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The Hamiltonian (9) is written as the sum of the kinetic and potential energy so that

the stability analysis for relative equilibria can be restricted from the full phase space to

a subset of the configuration space by means of the amended potential (20).

3 Nonlinear stability of relative equilibria

From the relative equilibrium theorem (see [6]) the relative equilibria of the mechanical

systems with symmetry
(
M, H,G

)
coincides with the critical points of the function hµe

given by

P̃e = 0,
δVµe

δF
= 0.

Thus, a point (Fe, Pe) ∈M is a relative equilibrium if the conditions

Pe = Tr(FeP
T
e ê)[Tr(FeEF T

e êT
3 ê3)]

−1ê3FeE, (21)

0 =
δU

δF
− µ2

e[Tr(FEF T êT
3 ê3)]

−2êT
3 ê3FeE, (22)

are satisfied. From these we get that an equilibrium configuration Fe must satisfy the

equation

0 = e3 ⊗ x + 2λ Tr(F T
e Fe − 1)Fe + 4µFe(F

T
e Fe − 1) + ξê3ξê3FeE, (23)

which is equivalent to the relations

e · x + 6(3λ + 2µ)(u2 − 1)u2 − ξ2(α1 + α2)u
2 = 0, (24)

(x− ξ2Ee3)× e3 = 0, (25)

where α1, α2, α3 are the eigenvalues of the Euler tensor E. The condition (25) is analogous

to the Staude condition for the relative equilibrium of rigid tops (see [5]).

For the analysis of the nonlinear stability of relative equilibria we apply the reduced

energy-momentum due to Simo et al. [4], which synthesizes the classical techniques of

Arnol’d and Smale [7]. In this method it is shown that if the quadratic form D2Vµe is

positive definite on certain space V —the admissible configuration variations—, then the

quadratic form D2hµe is also positive definite on V. This leads to sufficient conditions

for orbital nonlinear stability in the case of dynamical systems on configuration spaces of

finite dimension.

To determine the admissible configuration space we first observe that for the symmetry

group (10) the isotropy group for a prefixed values µe is given by

Gµe = {ϕ ∈ G | exp(sê3)µe exp(−sê3) = µe}. (26)
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Secondly, that the tangent space TFeQ has the vector basis B := {eiQ(Fe)}4i=1 given by

B = {ê1Fe, ê2Fe, ê3Fe, e4Fe}, (27)

where e4 represents the unity matrix. And, finally, that the tangent space to the orbit

Gµe · Fe of the relative equilibrium Fe can be written as

gµe ·Fe ≡ TFe(Gµe · Fe) = {sê3 | ∀s ∈ R}. (28)

Consequently, the space of admissible configuration variations V = TFe(Q/Gµe) defined

in the energy-momentum method (see [4]) is the linear manifold

V := span{ê1Fe, ê2Fe, e4Fe}. (29)

On the other hand, for the second variation of the amended potential (20) at the

relative equilibrium we obtain the following bilinear form on V× V:

D2Vµe(δF, ∆F ) = e3 · δF (F−1∆FF−1)x

+ ξ2
e [4I(F )−1 Tr(EF T A∆F ) Tr(EF T AδF ) + Tr(E∆F T AδF )]

+ λ
[
4 Tr(∆F T F ) Tr(δF T F ) + 2 Tr(C − 1) Tr(δF T ∆F T )

+ 2 Tr(C − 1) Tr(F T δFF−1∆F )
]

+ 2µ
[

Tr
(
(∆F T F )(δF T F )

)
+ Tr

(
(C − 1)(δF T ∆F T )

)
+ 2 Tr[(C − 1)F T δFF−1∆F

]
, (30)

where δF, ∆F ∈ V, ξe := µe/I(Fe) is the velocity at the equilibrium and A is the orthog-

onal projector on the subspace orthogonal to e3.

Now we use (30) to study the orbital stability of the relative equilibria family consti-

tuted by configurations for which the vertical vector e3 is an eigenvector of the spatial

Euler tensor E := FeEF T
e . In this case, from the equilibrium condition (25) one obtains

that the centroid vector is

x = χe3, (31)

where the constant χ is given by the product mgl, m being the mass of the top and l the

distance from the origin to the centre of mass.

Let us assume that the initial body frame is constituted by the eigenvectors of E at

t = 0, and choose the reference configuration Fe so that this reference frame coincides

with the spatial reference {ei}3i=1. Then the polar decomposition in (4) is reduced to

Fe = Ue. For this class of relative equilibria the matrix expression of the bilinear form

D2Vµe(δF, ∆F ) with respect to the basis (27) is

D2Vµe(Fe) = diag (A1, A2, A3). (32)
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with

A1 := −16µu4 + ξ2(α2 − α3)u
2 − χ (33)

A2 := −16µu4 + ξ2(α1 − α3)u
2 − χ (34)

A3 := 24(3λ + 2µ)u4 −
(
ξ2(α1 + α2) + 12(3λ + 2µ)

)
u2 + χ. (35)

3.1 Conclusion

The vertical relative equilibria (31) of a heavy top moving by similarity transformations

with a fixed point and modelled by a Saint Venant-Kirchhoff material are nonlinearly

stable (modulo rotations around the axis e3) if the rotation is about the axis for which

α3 < α1 (assuming α1 < α2), and ξ satisfies the conditions A2 > 0, A3 > 0, where u = u(ξ)

is given by the implicit relation

6(3λ + 2µ)(u2 − 1)u2 − ξ2(α1 + α2)u
2 + χu = 0. (36)
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