
The approximated variance of the output of nonlinear stochastic

systems

Ruiz-Fuentes, N.1, Ruiz-Molina, J.C.1 & Valderrama, M.J.2

1
Departamento de Estad́ıstica e I.O. Universidad de Jaén

2
Departamento de Estad́ıstica e I.O. Facultad de Farmacia. Universidad de Granada
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Abstract

The equivalent linearization technique is applied to approximate and analyze the

input-output relationships of nonlinear stochastic systems in the frequency domain.

When it is applied, the original coefficients of the system are approximated to give

the structure of the equivalent system. These new coefficients depend on the vari-

ance of the output, our aim is to approximate it. The spectral representation of the

involved processes allows us to express the variance of the output as the solution

of an integral equation depending on itself. We apply the technique to combined

Duffing-van der Pol systems and we deal with the use of numerical methods to

accelerate the convergence of the iterative procedure used to approximate the vari-

ance. The procedure depends on the nature of the input, therefore the results are

presented for several inputs.

Keywords: Equivalent Linearization Technique, Duffig-van der Pol, spectral repre-

sentation
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1 Introduction

The equivalent linearization technique is applied to nonlinear systems whose nonlinear

term can be neglected to yield an underlying linear system whose dynamic equations

are suitable to be treated by the technique. Our main objective is to carry out a fast

algorithm to approximate the variance of the output of the system. This goal allow us

to approximate some features of the real output and it raised when the approximation

procedures were applied because the coefficients of the linearized system depend on the

unknown variance of the output and we need to implement an algorithm to approximate

it. The procedure also depends on the input, thus we present the results under several

inputs and for various parameters. Our aim is also to compare the results for different

degrees of non-linearity.
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We consider a combined system so that it is necessary to make additional suppositions

about the output, however the method is applicable to both combined systems widely

used in several fields. The combined systems are the Duffing system and the van der

Pol system, both systems are represented by the same linear dynamics and a term that

represents their nonlinear behaviour. These systems have a nonlinear component that

can be neglected leading to a linear system.

Taking into account that the technique provides a linear system, it is possible to

apply the input-output relationships available for such systems to characterize the original

one. These relationships are the basic tool in this paper because the spectral density of

the approximated output is expressed through the spectral density of the input and the

amplitude response of the linearized system. The variance of the output can be obtained

as the total area under its auto-spectral density, so that we find that the variance of the

output is the solution of an integral equation and the integrand is a function depending on

it. To solve the problem we implement an iterative algorithm to approximate the variance

and finally we can approximate the spectral density of the output.

2 The equivalent Linearization Technique

The following equation represents a broad class of nonlinear dynamical systems

ÿt + αẏt + ω2

0yt + f0 (yt, ẏt) = xt,

where xt is a stochastic process representing the input, yt is a stochastic process represent-

ing the associated output and f0 (yt, ẏt) is the nonlinear contribution which is neglected

by the technique leading to a linear system, α and ω2
0 are the coefficients of the system.

The system is called combined Duffing-van der Pol system when

f0 (yt, ẏt) =
k

m
y3

t
+

c

m
y2

t
ẏt

The technique requires that the input or applied perturbation xt is a zero mean,

continuous in quadratic mean wide-sense stationary gaussian process. The linearization

technique also considers that the output of the system is approximated by the output

obtained after filtering the original input distorted by the stochastic process εe

t
, i.e. xt +

εe

t
, through the original system neglecting the nonlinear component, that is

ÿt + αẏt + ω2yt = xt + εe

t
.

The perturbation εe

t
is considered as the linearization error. However, what we really

consider as an approximation of the output is the stochastic process ye

t
obtained by

filtering the input xt through a linear equivalent system of a family of systems depending
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on the coefficients αe, ω
2
e
, this fact is represented by the following expression

ÿe

t
+ αeẏ

e

t
+ ω2

e
ye

t
= xt.

The selection of the equivalent system from the previous family, that means, the selection

of the coefficients to characterize the equivalent linear system, are obtained by minimizing

the quadratic mean error due to the linearization procedure. The best choice for the

Duffing-van der Pol system (Ruiz-Fuentes, 1999) is the following

αe ' α +
c

m
σ2

ye

t

,

ω2

e
' ω2

0 + 3
k

m
σ2

ye

t

,

where α, ω2
0 and k are the parameters of the original system. However αe and ω2

e
depend

on σ2
ye

t

which is unknown and our main objective is to approximate it. These parameters

characterize the equivalent system and they determine its transfer function given by

ηe (ω) =
1

2πωαei + (ω2
e
− 4π2 ω2)

, ∀ω ∈ (−∞,∞) .

If εe

t
represents the error process, the quadratic mean error which measures the accu-

racy of the technique is given by E
[

(εe

t
)2

]

= 2
(

c

m

)2
σ4

ye

t

σ2
ẏe

t

+ 6
(

k

m

)2
σ6

ye

t

also depending

on σ2
ye

t

.

In the case of the combined system we have to make additional suppositions about the

output because the nonlinear term f0 (yt, ẏt) cannot be decomposed in two components

depending on yt and ẏt, respectively. We suppose that the output is a narrow band

process.

3 Approximation algorithm

We use the spectral representation of stochastic processes and the properties of linear

systems to approximate the variance of the approximated output through an iterative

algorithm. If we consider that the equivalent system is linear, the spectral densities of

the input and of the output are related by

Sye

t
(ω) = |ηe (ω)|2 Sx (ω)

and

σ2

ye

t

=

∫

∞

−∞

|ηe (ω)|2 Sx (ω) dω.

Hence, the variance of the output is the solution of an integral equation whose integrand

is also a function depending on it through the amplitude response operator |ηe (ω)|2 that

depends on the parameters αe and ω2
e
. We write this fact in a reduced form as

θ = σ2

ye

t

= Ψ (θ)
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We propose and initial value σ2
0 = θ0, for the parameter θ and we fix the desired

tolerance. In the following steps, for i > 1, we apply the Steffensen and Aitken methods,

that is, we calculate

θi = Ψ (θi−1) and θi+1 = Ψ (θi)

and then evaluate

σ2

i
= θi−1 −

(θi − θi−1)
2

θi+1 − 2θi + θi−1

Afterwards we compare the difference
∣

∣σ2
i
− σ2

i−1

∣

∣ with the desired tolerance and if it is

exceeded the procedure begins again with θ0 = σ2
i
. When the procedure finishes we have

estimated the value of the variance of the approximated output. As we have mentioned

before the applied input determine the procedure of estimation because the evaluation of

the integral at each step is different depending on the spectral density of the input.

4 Numerical results

To shorten we outline the results only for two cases: white noise and wide-band processes.

White noise process

Let us consider that the input is a white noise process with constant spectral density

over all the frequencies, S (ω) = S0, ∀ω ∈ R. Thus, Sye

t
(ω) = S0 |ηe (ω)|2 , ∀ω ∈ R and

the iterative algorithm has to solve the following integral equation

σ2

ye

t

=

∫

∞

−∞

S0

4π2ω2α2
e
+ (ω2

e
− 4π2 ω2)2

dω

The results of the iterative algorithm are summarized in Table 1 for some values of S0 and

in Table 2 for several values of k. Obviously as the spectrum increases so do the variance

(Table 1). Columns It 1 and It 2 show the number of iterations needed to estimate the

variance, the first column is the number of iterations without considering the Aitken and

Steffensen procedures and It 2 shows the results within these procedures. Although it is

not necessary to justify that these procedures are adequate, we can check by comparing

the values given in these columns that the number of iterations has been significantly

reduced. The variance and the error values were the same for both procedures, there were

only insignificant differences.

Wide-band process

If the input is a wide-band process it has constant spectrum in a bounded interval,

S (ω) = S0, ∀ω ∈ [0, ω0] and it is zero valued elsewhere. Hence, Sye

t
(ω) = S0 |ηe (ω)|2,∀ω ∈

[0, ω0], and

σ2

ye

t

=

∫

ω0

0

S0

4π2ω2α2
e
+ (ω2

e
− 4π2 ω2)2

dω
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Input: white noise

Parameters Spectrum Variance Error It 1 It 2

k = 1 1 0.236529 0.080534 22 3

c = 1 1.5 0.302127 0.168147 33 4

m = 1 3 0.444773 0.538292 90 4

α = 1

ω2
0 = 1

5 0.578737 1.18991 123 5

Table 1: Same parameters-different spectrum S0

Input: white noise

Parameters k Variance Error It 1 It 2

S0 = 3 0.1 0.718235 0.045044 24 3

c = 1 0.5 0.538966 0.249173 52 4

m = 1 1.5 0.390881 0.814656 133 4

α = 1

ω2
0 = 1

3 0.305971 1.5524 333 5

Table 2: Same spectrum and parameters-different values of k

Table 3 summarizes some of the results in this case and Figures 1 and 2 show the behaviour

of the error at each step for the last values of the parameters shown in Table 3.

Input: wide band process

Parameters Spectrum Variance Error It 1 It 2

k = 1 1 0.149947 0.0204666 13 3

c = 1 1.5 0.196935 0.0464139 18 3

m = 1 3 0.302113 0.168007 33 4

α = 1

ω2
0 = 1

5 0.40316 0.400134 64 4

Table 3: Same parameters-different spectrum S0

5 Conclusions

After the troubles raised with the application of the equivalent linearization technique

have been solved, the solution of the iterative algorithm leads to acceptable results after

few iterations for a small tolerance, the procedure allows to approximate the spectral
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Figure 1: Plot of error at each step. Unitary parameters, S0 = 5

Figure 2: Plot of error at each step. Fast method. Unitary parameters, S0 = 5

density of the output of the nonlinear system.
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