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Abstract

The notion of copula was introduced by A. Sklar in 1959, when answering a

question raised by M. Fréchet about the relationship between a multidimensional

probability function and its lower dimensional margins. At the beginning, copulas

were mainly used in the development of the theory of probabilistic metric spaces.

Later, they were of interest to define nonparametric measures of dependence between

random variables, and since then, they began to play an important role in probability

and mathematical statistics. In this paper, a general overview of the theory of

copulas will be presented. Some of the main results of this theory, various examples,

and some open problems will be described.
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1 Introduction

During a long time statisticians have been interested on the relationship between a mul-

tivariate distribution function and its lower dimensional margins (univariate or of higher

dimensions). M. Fréchet (see [11]), and G. Dall’Aglio (see [6]) did some interesting works

about this matter in the fifties, studying the bivariate and trivariate distribution functions

with given univariate margins. The answer to this problem for the univariate margins case

was given by A. Sklar in 1959 (see [31]) creating a new class of functions which he called

copulas. These new functions are restrictions to [0, 1]2 of bivariate distribution functions
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whose margins are uniform in [0, 1]. In short, Sklar showed that if H is a bivariate dis-

tribution function with margins F (x) and G(y), then there exists a copula C such that

H(x, y) = C(F (x), G(y)).

Between 1959 and 1976 most of the results about copulas were obtained in the course

of the development of the probabilistic metric spaces, mainly in the study of binary

operations in the space of the probability distribution functions. In 1942, Karl Menger (see

[20]) proposed a probabilistic generalization of the theory of metric spaces, by replacing

the number d(p, q) by a distribution function Fpq, whose value Fpq(x) for any real x is the

probability that the distance between p and q is less than x. The first difficulty in the

construction of probabilistic metric spaces comes when one tries to find a “probabilistic”

analog of the triangle inequality. Menger proposed Fpr(x + y) ≥ T (Fpq(x), Fqr(y)), where

T is a triangle norm or t-norm. Some t-norms are copulas, and conversely, some copulas

are t-norms. For a history of the development of the theory of probabilistic metric spaces,

see [28] and [29].

Subsequently, it was discovered that copulas could be useful to define nonparametric

measures of dependence between random variables. Since then, the concept of copula has

been rediscovered in several times, playing an important role in Probability and Statistics,

particularly in problems related to dependence, given marginals and functions of random

variables that are invariants under monotone transformations. A historical review about

the evolution of this matter can be found in [7] and [28]. The recent book by R.B. Nelsen

(see [21]) is an important monograph about copulas. As for the relationship with problems

of given marginals, it can be seen [2], [5], [8] and [27].

2 Copulas

We begin with the definition of copula for the bivariate case.

Definition 2.1. A copula is a function C : [0, 1]2 −→ [0, 1] which satisfies:

(a) For every u, v in [0, 1], C(u, 0) = 0 = C(0, v), and C(u, 1) = u and C(1, v) = v;

(b) for every u1, u2, v1, v2 in [0, 1] such that u1 ≤ u2 and v1 ≤ v2, C(u2, v2)−C(u2, v1)−
C(u1, v2) + C(u1, v1) ≥ 0.

The importance of copulas in Statistics is described in Sklar’s Theorem:

Theorem 2.1. Let X and Y be random variables with joint distribution function H and

marginal distribution functions F and G, respectively. Then there exists a copula C such

that

H(x, y) = C(F (x), G(y)) (1)

for all x, y in IR. If F and G are continuous, then C is unique. Otherwise, the copula

C is uniquely determined on Ran(F )×Ran(G). Conversely, if C is a copula and F and

500



G are distribution functions, then the function H defined by (1) is a joint distribution

function with margins F and G.

Thus copulas link joint distribution functions to their one-dimensional margins. A

proof of this theorem can be found in [29].

A first example of copulas is the product copula Π(u, v) = uv, which characterizes

independent random variables when the distribution functions are continuous.

As a consequence of Sklar’s Theorem, we encounter the Fréchet-Hoeffding bounds for

copulas, i.e., for any copula C and for all u, v in [0, 1],

W (u, v) = max(u + v − 1, 0) ≤ C(u, v) ≤ min(u, v) = M(u, v),

where W and M are also copulas.

Much of the usefulness of copulas in the study of nonparametric statistics derives from

the facts expressed in the following result.

Theorem 2.2. Let X and Y be continuous random variables with copula CXY . Let f

and g be strictly monotone functions on Ran(X) and Ran(Y ), respectively.

(a) If f and g are strictly increasing, then Cf(X),g(Y )(u, v) = CXY (u, v).

(b) If f is strictly increasing and g is strictly decreasing, then Cf(X),g(Y )(u, v) = u −
CXY (u, 1− v).

(c) If f is strictly decreasing and g is strictly increasing, then Cf(X),g(Y )(u, v) = v −
CXY (1− u, v).

(d) If f and g are strictly decreasing, then Cf(X),g(Y )(u, v) = u+v−1+CXY (1−u, 1−v).

3 Examples of families of copulas

In this section we show some of the most known family of copulas.

Example 3.1. Fréchet’s family (1958) (see [12]). The following two-parameter family

of copulas is a convex linear combination of the copulas Π, W and M , Cα,β(u, v) =

αM(u, v) + (1− α− β)Π(u, v) + βW (u, v), where α, β ∈ [0, 1] with α + β ≤ 1.

Example 3.2. Farlie-Gumbel-Morgenstern’s family (1960) (see [10]). If θ ∈ [−1, 1], then

the function Cθ(u, v) = uv + θuv(1 − u)(1 − v) is a one-parameter family of copulas. A

generalization of this family can be found in [26].

Example 3.3. Marshall-Olkin’s family (1967) (see [19]). If α, β ∈ [0, 1], then Cα,β(u, v) =

min(u1−αv, uv1−β) is a two-parameter family of copulas.

Example 3.4. Archimedean copulas. Copulas of the form C(u, v) = ϕ[−1](ϕ(u) + ϕ(v))

are called Archimedean copulas, where ϕ[−1] is the pseudo-inverse of a continuous and

strictly decreasing function from [0, 1] to [0,∞] with ϕ(1) = 0. For a detailed study of

these copulas, see [13].
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4 Copulas and association

In this section we will look at different ways in which copulas can be used in the study of

dependence between random variables. For a historical review of measures of association

and concepts of dependence, see [17] and [18]. For some recent results, see [4], [21], [22],

and [30].

4.1 Measures of association

4.1.1 Kendall’s τ

Kendall’s tau measure of a pair (X, Y ), distributed according to H, can be defined as the

difference between the probabilities of concordance and discordance for two independent

pairs (X1, Y1) and (X2, Y2) each with distribution H; that is

τXY = Pr{(X1 −X2)(Y1 − Y2) > 0} − Pr{(X1 −X2)(Y1 − Y2) < 0}.

These probabilities can be evaluated by integrating over the distribution of (X2, Y2). So

that, in terms of copulas, Kendall’s τ becomes to

τC = 4
∫ 1

0

∫ 1

0
C(u, v)dC(u, v)− 1,

where C is the copula associated to (X, Y ).

4.1.2 Spearman’s ρ

Let (X1, Y1), (X2, Y2) and (X3, Y3) be three independent random vectors with a common

joint distribution function H. Consider the vectors (X1, Y1) and (X2, Y3), then the Spear-

man’s ρ coefficient associated to a pair (X, Y ), distributed according to H, is defined

as

ρXY = 3(Pr{(X1 −X2)(Y1 − Y3) > 0} − Pr{(X1 −X2)(Y1 − Y3) < 0}).

In terms of the copula C associated to the pair (X, Y ) becomes to

ρC = 12
∫ 1

0

∫ 1

0
(C(u, v)− uv)dudv. (2)

4.1.3 Schweizer and Wolff’s σ

If we replace the function C(u, v)−uv in (2) by its absolute value, then we obtain Schweizer

and Wolff’s σ, given by

σC = 12
∫ 1

0

∫ 1

0
|C(u, v)− uv|dudv.
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4.2 Dependence concepts

Let X and Y be continuous random variables with joint distribution function H and

marginals F and G, respectively. We say that X and Y are positive quadrant dependent

if H(x, y)− F (x)G(y) ≥ 0 for all x, y ∈ IR. In terms of the copula CXY associated to the

pair (X,Y ), it means that CXY (u, v) ≥ uv for all u, v ∈ [0, 1].

See [15] and [16] for further discussions of this concept of dependence and many others.

Lastly, we note that there exist some relationships among some measures of association

and certain dependence concepts. For a complete review, see [21].

5 Other problems related to copulas

5.1 Operations on distribution functions and quasi-copulas

A binary operation χ on the set of distribution functions is derivable from a function on

random variables if there exists a Borel-measurable two-place function Z satisfying the

following condition: For every pair of distribution functions F and G, there exist two

random variables X and Y such that F and G are, respectively, the distribution functions

of X and Y , and χ(F, G) is the distribution function of the random variable Z(X, Y ).

The notion of quasi-copula was introduced in [1] to characterize operations on distri-

bution functions that can or cannot be derived from operations on random variables (see

also [25]). Genest et al. (see [14]) have characterized the quasi-copula concept in simpler

operational terms, as the following result asserts:

Theorem 5.1.1. A function Q : [0, 1]2 −→ [0, 1] is a quasi-copula if and only if it

satisfies:

(i) Q(0, x) = Q(x, 0) = 0 and Q(x, 1) = Q(1, x) = x for all x in [0, 1];

(ii) Q(x, y) is nondecreasing in each of its arguments; and

(iii) the Lipschitz condition |Q(x1, y1)−Q(x2, y2)| ≤ |x1−x2|+ |y1− y2| for all x1, x2,

y1 and y2 in [0, 1].

Recently (see [24]), it has been proved a new simple characterization of quasi-copulas

and some properties of these functions, all of them concerning the mass distribution of a

quasi-copula. It has been showed that the features of this mass distribution can be quite

different from that of a copula.

5.2 Markov processes

We begin this subsection with a “product” operation for copulas studied in [9].
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Definition 5.2.1. Let C1 and C2 be copulas. The product of C1 and C2 is the function

C1 ∗ C2 from [0, 1]2 to [0, 1] given by

(C1 ∗ C2)(u, v) =
∫ 1

0

∂C1

∂v
(u, t)

∂C2

∂u
(t, v)dt.

As a first result, the authors (see [9]) showed that C1 ∗C2 is a copula, and their main

result is the following theorem:

Theorem 5.2.1. Let {Xt|t ∈ T} be a stochastic process, and for each s, t in T , let Cst

denote the copula of the random variables Xs and Xt. Then the following conditions are

equivalent:

(a) The conditional distribution functions P (x, s; y, t) satisfy the Chapman-Kolmogorov

equations for all s < u < t in T and almost all x, y in IR;

(b) For all s < u < t in T , Cst = Csu ∗ Cut.

This theorem yields a new technique for constructing Markov processes.

6 New problems

There are new problems in the study of the theory of copulas under three different points

of view. These are:

• Stochastic orderings: See [3] and [23] for more details.

• Nonparametric Statistics: The use of copulas to define nonparametric hypothesis

testing.

• Probability Theory: Developments in the theory of quasi-copulas.

• Numerical Analysis: Methods of approximation and interpolation in a given family

of copulas from data provided by a bivariate random sample.
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