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Abstract

We introduce a new operation for the difference of two sets A and C of IRn

depending on a parameter α. This operation may yield as special cases the classical

difference and the Minkowski difference. Continuity properties with respect to both

the operands and the parameter of this operation are studied. Lipschitz properties

of the Minkowski difference between two sets of a normed vector space are proved

in the bounded case as well as in the unbounded case without condition on the

dimension of the space, improving previous results.
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1 Introduction.

Recently, there has been a breakthrough in the literature concerning concrete applica-

tions of Mathematics to fields like biology, ecology, using the concept of shape evolution

([1]). If these phenomena may be represented by means of partial differential equations, a

global approach is sometimes necessary; if one wants to describe a zone whose evolution

depends on its shape, as a burning or epidemic zone, a differential calculus on the power

set of IRn, or, more generally, in a metric space, is required. The embedding methods

(see [10], [15]) are in general not satisfying because the knowledge and the visualization

of the embedded sets are not always available. Several authors have already introduced

various notions of differentiability and integration of multi-valued mappings whose values

are subsets of IRn that take into account the shape of the values of the map, to give a

meaning to the differential equation X ′(t) = F (X(t)), where X is a set-valued map from

IR+ to the power set of a normed vector space (see [6], [18], [11], [1]). Now, it would

be interesting to apply these theories (see [5], for an example of a differential equation

with semi-affine approximation). An evolution field (i.e. F ) which may be interpreted
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in biological terms is needed to study concrete cases. In this paper, we are interested in

the concept of differences. The classical difference A − C = {a− c : a ∈ A, c ∈ C} of

two subsets A and C of a normed vector space is large unless C is empty or a singleton.

On the other hand, the Minkowski difference defined by A
∗
− C = {x : x+ C ⊂ A} (see

[7]) is small thus more convenient and is already used in morphological analysis to de-

scribe erosion (as in [1]). However, it has the drawback of often being empty. Another

difference is the Demyanov’s difference, useful in optimization, non-smooth analysis and

quasidifferential calculus (see [17]), constructed via the difference of supporting points.

In the same direction, difference of support functions is also considered ([8]). Based on

these, difference of directed sets is presented in [2]. There is no biological interpretation

of theses differences. Consequently, they seem not to be adapted to certain biological

problems.

The aim of this paper is, on the one hand, to overcome the above disadvantages and, on

the other hand, to present an operation that can be interpreted in biological terms. To this

end, a new operation scheme is proposed on the subsets of IRn. Let us consider a simple ex-

ample, the study of the evolution of a zone contaminated by a virus, satisfying a differential

equation X ′(t) = F (X(t)). X(t) is the zone where p% of the population is infected by the

virus at the time t. Which F can describe the evolution of X(t) ? It is clear that more the

contaminated zone near a point x is large more quick is the contamination. In this case,

the set X(t) ∩B(x,R) has to be sufficiently large to be infecting. We then introduce the

set X(t)
α
− B(x,R) = {y ∈ IRn : L ((y +B(x,R)) ∩X(t)) ≥ α}, where L is the Lebesgue

measure on IRn. R represents the maximum radius of influence of the virus. α measures

the virulence of the virus: more α is small, more the virus is very infectious. We have ex-

tended this difference to a general case: A
α
− C = {x ∈ IRn : L ((x+ C) ∩ A) ≥ α} . This

difference coincides with the classical difference taking α = 0 and with the Minkowski

difference, taking α = L(C) whenever A, C are closed, convex sets, int(C) is nonempty

and A or C is bounded.

In the following section, we introduce an abstract scheme of difference on the subsets

of IRn and we study its continuity properties. The last section is devoted to Lipschitz

properties of the Minkowski difference, improving previous results (see [14], [18], [12]).

These results, and their proofs, can be found in [13].

2 A new difference on the power set of IRn

Let E be a normed vector space, whose closed unit ball is denoted by B. C(E) represents

the space of all the closed, convex, nonempty sets of E and CB(E) the elements of C(E)

which are bounded. The convergence in the sense of Painlevé-Kuratowski is denoted P.K-

convergence. The Hausdorff distance is represented by dH . Continuity with respect to
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this distance is called H-continuity.

We introduce a new notion of difference between two sets in the particular case where

E = IRn. L is the Lebesgue measure on IRn and by convention L(∅) = −∞.

Definition 1 Let A, C be two sets of IRn. and α ≥ 0. We define A
α
− C in the following

way:

A
α
− C = {x ∈ IRn : L ((x+ C) ∩ A) ≥ α} .

It is clear that, if α > L (C) or α > L (A) , then A
α
− C = ∅. In the sequel, we suppose

that 0 ≤ α ≤ min((A), (C)).

Proposition 1 Let A and C be two sets of IRn and α ≥ 0. If A
α
− C is nonemty,the

subset A
α
− C has the following properties:

(i) If A and C are closed, convex, nonempty sets and if C or A is bounded then A
α
− C

is a closed set.

(ii) If A and C are convex then A
α
− C is convex.

(iii) If A and C are bounded sets then A
α
− C is bounded and

sup
z∈A

α
−C

‖z‖ ≤ sup
a∈A

‖a‖+ sup
c∈C

‖c‖.

The assertion (i) comes from the continuity of the Lebesgue measure on the compact,

convex, nonempty sets of IRn. The proof of (ii) is based on the Brunn-Minkowski inequality

(cf [4]).

The two following propositions link the classical difference A − C, the Minkowski

difference A
∗
− C and the new difference A

α
− C:

Proposition 2 Let A and C be two nonempty subsets of IRn. We have the following

properties:

(i) A− C = A
0
− C.

(ii) If 0 ≤ α ≤ L (C), then A
∗
− C ⊂ A

L(C)

− C ⊂ A
α
− C ⊂ A− C.

(iii) If A and C are two closed, convex sets, int(C) being nonempty and A or C being

bounded, then A
∗
− C = A

L(C)

− C.

We also have:

Proposition 3 Let A and C be two closed, convex, nonempty sets, int(C) being nonempty.

(i) Assume that A or C is bounded. If A
∗
− C 6= ∅ and if (αm)m∈IN is a sequence of

[0,L (C)] , converging to L (C) then
(
A

αm

− C
)

m∈IN
P.K-converges to A

∗
− C.

(ii) Assume that A and C are bounded. If A
∗
− C = ∅ and if (αm)m∈IN is a sequence

of [0,L (C)], converging to L (C) then, for m sufficiently large, A
αm

− C = ∅.
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(iii) Assume that C is bounded and A has a nonempty interior. If (αm)m∈IN is a se-

quence of nonnegative reals converging to 0 then
(
A

αm

− C
)

m∈IN
P.K-converges to A− C.

Let us give another property of A
α
− C :

Theorem 1 Let A and C be two closed convex subsets of IRn, C bounded, and let α ≥ 0.

We suppose that

{x ∈ IRn : L ((x+ C) ∩ A) > α}

is nonempty. Then,

A
α
− C = cl({x ∈ IRn : L ((x+ C) ∩ A) > α}).

Proposition 4 Let A and C be two closed, convex sets of IRn such that C is bounded

and α > 0. If x satisfies L ((x+ C) ∩ A) > α, then x belongs to int
(
A

α
− C

)
.

We now study continuity properties of this difference with respect to both the param-

eter α and the operands.

Theorem 2 Let (Am)m∈N and (Cm)m∈IN be two sequences of nonempty, closed, convex

subsets of IRn P.K-converging respectively to A and to a bounded set C. Let (αm)m∈IN be

a sequence of IR+, converging to α ≥ 0. We further suppose that

{x ∈ IRn : L ((x+ C) ∩ A) > α} (1)

is nonempty.

Then,
(
Am

αm

− Cm

)
m∈IN

P.K-converges to A
α
− C.

Corollary 1 Let A and C be two nonempty, closed, convex, bounded subsets of IRn and

let α > 0 such that

{x ∈ IRn : L ((x+ C) ∩ A) > α} 6= ∅.

Then, the function

F : CB (IRn)× CB (IRn)× R+ → CB (IRn) ∪ {∅}

defined by F (A′, C ′, α′) = A′ α′

− C ′ is uniformly H-continuous on a neighbourhood of

(A,C, α) .

In Theorem 2, the hypothesis {x ∈ IRn : L ((x+ C) ∩ A) > α} 6= ∅ excludes the case

where α = L (C) that corresponds to the Minkowski difference if A and C are two closed,

convex sets, int(C) being nonempty and A or C being bounded (see proposition 2). In

the following section, we study this particular case and, more generally, we give Lipschitz

results on the Minkowski difference.
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3 Lipschitz properties of the Minkowski difference.

In this section, let us consider the general case where E is a normed vector space (with

finite or infinite dimension).

3.1 The bounded case.

For any nonempty subset A of E, we introduce the value ρ (A) , belonging to IR+∪{+∞},
called inradius, defined as follow:

ρ (A) = sup {r > 0 : ∃a ∈ A B (a, r) ⊂ A} .

Our main result is based on the following lemma:

Lemma 1 Let A be a convex, bounded, subset of E such that int(A) is nonempty. Then,

we have the following property: for any ε > 0, there exists τ > 0 such that

∀x ∈ A ∃y ∈ B (x, ε) : B (y, τ) ⊂ A.

If a and R > 0 are such that B (a,R) ⊂ A, we can give the following evaluation of τ :

τ = min

(
R,

Rε

diam (A)−R

)
.

We are now in position to state the following theorem:

Theorem 3 Let us define the function F : CB (E)×CB (E) → CB (E)∪{∅} as follows:

F (A,C) = A
∗
− C.

If int
(
A

∗
− C

)
6= ∅ then F is Lipschitz on the neighbourhood

B
(
A,αρ

(
A

∗
− C

))
×B

(
C, αρ

(
A

∗
− C

))
of (A,C) with rate

diam (A) + (4α− 1) ρ
(
A

∗
− C

)
(1− 2α) ρ

(
A

∗
− C

)
for any α in

]
0, 1

6

]
.

The quality of the Lipschitz constant depends on its value and on the size of the

neighbourhood of A× C on which you want the estimate.

We have a quite good estimate of the smallest Lipschitz constant:
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Example 1 Let us consider the case where E = IR2. For R, R′, such that R′ > R > 0,

set A =
−
co ({(0, 0)} ∪B ((0, R′) , R)) where

−
co represents the closed convex hull. For any

ε ∈ [0, R] , set Cε = B ((0, 0) , ε) . It is easy to see that, for ε′ ∈ [0, R′]:

dH

(
A

∗
− Cε, A

∗
− Cε′

)
=
R′

R
dH (Cε, Cε′) .

On the other hand, Theorem 3 states that a Lipschitz constant is(
diam (A) + (4α− 1) ρ

(
A

∗
− C0

))
(1− 2α) ρ

(
A

∗
− C0

) =
R′ + 4αR

(1− 2α)R
.

We have:

inf
α∈]0, 1

6 ]

(
diam (A) + (4α− 1) ρ

(
A

∗
− C0

))
(1− 2α) ρ

(
A

∗
− C0

) =
R′

R
.

3.2 The unbounded case.

K(A) denotes the recession (or asymptotic cone) of A.

We state a proposition analogous to Lemma 1 in the unbounded case:

Proposition 5 Let A be a nonempty subset of E such that K (A) has a nonempty inte-

rior. Then we have that for any ε > 0 there exists τ > 0 such that

∀x ∈ A ∃y ∈ B (x, ε) : B (y, τ) ⊂ A.

If a and R > 0 are such that B (a,R) ⊂ K (A) , then we can take τ = εR
‖a‖ and y = x+ ε

‖a‖a,

in the case where a 6= 0.

If a = 0 then A = E, the result is then obtained with any τ > 0 and any y in A.

We are now in position to state a Lipschitz result in the unbounded case.

Theorem 4 Let us define the mapping F : C (E)× C (E) → C (E) ∪ {∅} as follows:

F (A,C) = A
∗
− C.

If int
(
K

(
A

∗
− C

))
6= ∅, then F is Lipschitz on the neighbourhood B

(
A, R

2

)
× B

(
C, R

2

)
of (A,C) with rate ‖a‖

R
, where a and R are such that B (a,R) ⊂ K

(
A

∗
− C

)
.

The following example shows that we obtain a good estimation of the Lipschitz con-

stant.
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Example 2 Let us place in the case where E = IR2.

Set f (x) = |x| for any x in IR and A =epi(f). For any ε ≥ 0, let us consider Cε = εB.

It is clear that dH (Cε, Cε′) = |ε− ε′| . We can verify that

A
∗
− Cε = A+

(
0,
√

2ε
)

and then

dH

(
A

∗
− Cε, A

∗
− Cε′

)
=
√

2dH (Cε, Cε′) .

On the other hand, B
((

0,
√

2
)
, 1

)
⊂ K

(
A

∗
− C0

)
. Then, applying Theorem 4, we obtain

that

dH

(
A

∗
− Cε, A

∗
− Cε′

)
≤
√

2dH (Cε, Cε′)

for any Cε, Cε′ in B
(
C0,

1
2

)
.

Remark 1 If int
(
K

(
A

∗
− C

))
is empty, the multi-valued map F , with F (A′, C ′) =

A′ ∗
− C ′, may be discontinuous at (A,C) . Indeed, let us consider the particular case

where E = IR3. Let
ψ :

[
0, π

2

[
→ IR

θ 7−→ tan θ
cos θ

the polar equation of the parabole P0 : y = x2. Set A =
−
co (A1 ∪ A2) where A1 =

{(0, 0, z) : z ∈ [−1, 1]} and A2 =
{
(ψ(θ) cos(θ), ψ (θ) sin(θ), 0) : 0 ≤ θ < π

2
,
}
. For any ε ≥

0, let us consider Cε = εB. If 0 < ε < 1, we have:

dH

(
A

∗
− Cε, A

∗
− C0

)
= +∞.
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[10] Hörmander, P.L.: Sur la fonction d’appui des ensembles convexes dans un espace

localement convexe., Ark.Mat. 3 (12) (1954), 181-186.
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