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Abstract

The purpose of this paper is to establish a characterization of jump discontinu-

ities for bivariate functions when they are not explicitly known and only the values

at a limited number of points are available.
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1 Introduction

The approximation of faulted explicit surfaces has received increasing attention in the last

few years, due to its application in oil exploration, medical imaging, Geology, Geophysics

and other sciences.

Let S be an explicit surface of the form x3 = f(x1, x2), where f is a real function

defined over a bounded open subset Ω ⊂ IR2, and such that f is discontinuous on each

point of an unknown subset F contained in the closure of Ω. The first step in the

process of approximation of f is to localize the subset F . For this step, in [3] and [4],

an algorithm is given, which is derived from a characterization of jump discontinuities.

This characterization uses a ‘‘continuous’’ functional which assumes that f is explicitly

known. In practice, this functional needs to be discretized because only a finite subset of

scattered data points is available. In this paper, we give a new characterization directly

expressed in terms of the discretized functional.

This paper is organized as follows. We recall, in Section 2, some notations and pre-

liminaries. Section 3 is devoted to the study of jump discontinuities. In Subsection 3.1

we present some hypotheses and previous results and, finally, in Subsection 3.2, we prove

the characterization of the discontinuities.
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2 Notations and preliminaries

Let A be a subset of IR2. We denote by A, ∂A and µ(A), respectively, the closure, the

boundary and the (Lebesgue) measure of A. We write P1(A) for the space formed by

the restrictions to A of all polynomial functions of degree ≤ 1, with respect to the set of

variables, defined over IR2.

Let ω be an open subset of IR2. For any nonempty ordered finite set T ⊂ ω which

contains at least three non–aligned points and for any function f : T → IR, we denote by

ΠT f the discrete least–squares projection of f in P1(ω), i.e. the unique element of P1(ω)

such that ∑
x∈T

(f(x)− ΠT f(x))2 = min
p∈P1(ω)

∑
x∈T

(f(x)− p(x))2.

For any two functions u, v : T → IR, we write

µT
uv = M

∑
x∈T

u(x)v(x)−
∑
x∈T

u(x)
∑
x∈T

v(x),

M being the cardinal of T . Likewise, we write ∆T
uv = µT

uuµ
T
vv−(µT

uv)
2. It can be shown that

T contains three non–aligned points if and only if ∆T
x1x2

> 0, where we have indentified

xi, with the mapping x = (x1, x2) → xi, i = 1, 2. For any f : T → IR and any bounded,

closed, rectangle K ⊂ IR2 such that T ⊂ K, let JT be the functional introduced by

Arcangéli and Manzanilla [1], as follows:

JT (f) =
1

µ(K)

∫
K

‖∇(ΠT f)‖2 dx ,

where ‖ . ‖ denotes the Euclidean norm in IR2. It is readily seen that ΠT f can be expressed

by ΠT f(x1, x2) = αf
0T + αf

1T x1 + αf
2T x2 , and that

JT (f) =
(
αf

1T

)2

+
(
αf

2T

)2

, (1)

where

αf
1T =

µT
x2x2

µT
x1f − µT

x1x2
µT

x2f

∆T
x1x2

, αf
2T =

µT
x1x1

µT
x2f − µT

x1x2
µT

x1f

∆T
x1x2

. (2)

By an open subset with a Lipschitz–continuous boundary we shall understand a bounded,

connected, nonempty, open subset of IR2 with a Lipschitz-continuous boundary in the J.

Nečas [2] sense. Finally, we recall that, if ω is bounded and f is a Lipschitz–continuous

function on ω, there exists a unique continuous extension of f to ω, which we shall denote

with the same letter f .

Remark 1 The definition of JT (f) is analogous to the definition of JK(f) in [4] by using

the continuous least-squares projection instead of the discrete least-squares projection.
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3 Jump discontinuities characterization

3.1 Hypotheses and previous results

Suppose we are given

• a nonempty, bounded, open rectangle Ω ⊂ IR2 and a point c = (c1, c2) ∈ Ω,

• a function f : Ω → IR,

• an ordered finite set T = {x0
i = (x0

1i, x
0
2i) , i = 1, . . . ,M } ⊂ Ω such that ∆T

x1x2
> 0,

• for any j = 1, 2, a real sequence (rjn)n∈IN , such that rj0 = 1 and

∀n ∈ IN∗, rjn > 1 , (3)

lim
n→+∞

Pjn = +∞ , (4)

where, for any n ∈ IN , Pjn =
n∏

i=0

rji. Let (Tn)n∈IN be the sequence defined by

T0 = T ,

Tn = {xn
i = (xn

1i, x
n
2i) | xn

i = vn(xn−1
i ) , xn−1

i ∈ Tn−1 } , n ≥ 1,

∣∣∣∣∣ (5)

where, for any n ∈ IN, vn denotes the mapping from Ω into IR2, defined by

vn(x1, x2)=

(
c1 +

x1 − c1

r1n

, c2 +
x2 − c2

r2n

)
. (6)

From (3) it follows that, for any n ∈ IN , Tn ⊂ Ω.

Proposition 1 Under hypothesis (3), we have, for any n ∈ IN , that ∆Tn
x1x2

> 0.

Proof. From (5) and (6), it follows that

∀n ∈ IN, ∀i = 1, . . . ,M, xn
i =

(
c1 +

x0
1i − c1

P1n

, c2 +
x0

2i − c2

P2n

)
, (7)

then, for any j, k = 1, 2, µTn
xjxk

= µT
xjxk

/(PjnPkn) , and therefore, for any n ∈ IN , we have
1

P 2
1nP

2
2n

∆T
x1x2

> 0. From which, we obtain the result.

Proposition 1 implies that the coefficients αf
jTn

of ΠTnf, j = 1, 2, can be obtained as in

(2). Then, we can write, for any n ∈ IN and for j = 1, 2,

αf
jTn

= Pjn αgn

jT , (8)

where gn : Ω → IR is the function defined, for any (x1, x2) ∈ Ω, by

gn (x1, x2) = f

(
c1 +

x1 − c1

P1n

, c2 +
x2 − c2

P2n

)
. (9)

Then, by (7),

∀n ∈ IN,∀i = 1, . . . ,M, gn (x0
i ) = f(xn

i ) . (10)
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Now, taking into account (2), (8) can be written, for j = 1, 2, by

∀n ∈ IN, αf
jTn

=
Pjn

∆T
x1x2

Xjn, (11)

where

Xjn = µT
xkxk

µT
xjgn

− µT
xjxk

µT
xkgn

, k ∈ {1, 2} \ {j} . (12)

Then, we obtain from (1) that

∀n ∈ IN, JTn(f) = (αf
1Tn

)2 + (αf
2Tn

)2 . (13)

We suppose now that there exists a positive constant C0, such that

∀n ∈ IN,
1

C0

<
P1n

P2n

< C0 . (14)

Theorem 2 Let K ⊂ Ω be a bounded rectangle, with sides parallel to the coordinate axes

and such that T ∪ {c} ⊂ K. Suppose that f |K is a Lipschitz–continuous function with

Lipschitz constant L and (Tn)n∈IN is a sequence as in (5). Suppose that hypotheses (3) and

(14) hold. Then, there exists a constant C > 0 such that, for any n ∈ IN , JTn(f) ≤ CL2.

Proof. From T ∪ {c} ⊂ K, we derive, for all n ∈ IN , that Tn ⊂ K. For simplicity, we

shall write f and gn instead of f |K and gn|K , respectively, for any n ∈ IN . From (9) and

the continuity of f , it follows that

∀n ∈ IN, ∃dn ∈ HT , gn(dn) =
1

M

M∑
i=1

gn(x0
i ) , (15)

where HT is the convex hull of T , and obviously

∀i = 1, . . . ,M,
∥∥x0

i − dn

∥∥ ≤ max
x,y∈T

‖x− y‖ . (16)

On the other hand, for any n ∈ IN and any j = 1, 2, we have

µT
xjgn

= M

M∑
i=1

x0
jign(x0

i )−
M∑
i=1

x0
ji

M∑
i=1

gn(x0
i ) . (17)

Now, using (15) and (12), we obtain, for any n ∈ IN , and any j = 1, 2, that

Xjn = M
M∑
i=1

(
µT

xkxk
x0

ji − µT
xjxk

x0
ki

)
(gn(x0

i )− gn(dn)), k ∈ {1, 2} \ {j}. (18)

Since f is Lipschitz–continuous with constant L, from (9) it follows that gn is also

Lipschitz–continuous on K, with constant Ln = L/ min{P1n , P2n}. Then, from (16) and

(18), for any n ∈ IN and any j = 1, 2, we have

|Xjn| ≤
ML

Pn

max
x,y∈T

‖x− y‖
M∑
i=1

∣∣∣µT
xkxk

x0
ji − µT

xjxk
x0

ki

∣∣∣ , k ∈ {1, 2} \ {j}.
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Now, by (11) and (14), it follows that∣∣∣αf
jTn

∣∣∣ ≤ MLC0

∆T
x1x2

max
x,y∈T

‖x− y‖
M∑
i=1

∣∣µT
xkxk

x0
ji − µT

x1x2
x0

ki

∣∣ , k ∈ {1, 2} \ {j} .

To complete the proof it is sufficient to take (13) into account.

Let ω, ω1, ω2 be three open subsets of Ω with a Lipschitz–continuous boundary such that

ω1 ∩ ω2 = ∅ ,

ω1 ∪ ω2 = ω ,

c ∈ ∂ω1 ∩ ∂ω2 .

∣∣∣∣∣∣∣∣ (19)

We suppose now that T ⊂ ω verifies

Ti,0 = T ∩ ωi 6= ∅, i = 1, 2 , (20)

T ∩ ∂ω1 ∩ ∂ω2 = ∅ , (21)

bT1,0 6= bT2,0 , (22)

where bTi,0 denotes the barycentre of Ti,0, for i = 1, 2, and that the sequence (Tn)n∈IN

given as in (5) verifies

∀n ∈ IN∗, i = 1, 2, Ti,n = vn(Ti,n−1) ⊂ ωi . (23)

Let F be an open (with induced topology) connected nonempty subset of ω ∩ ∂ω1.

Theorem 3 Let c ∈ F and let (Tn)n∈IN be the sequence defined by (5). Suppose that

hypotheses (3), (4), (20)–(23) hold. Assume that f is such that f1 = f |ω1 and f2 = f |ω2

are Lipschitz–continuous, f is continuous on ω \ F and presents a jump discontinuity on

every point of F , so that, for any x ∈ F , f1(x) 6= f2(x). Then, the sequence (JTn(f))n∈IN

is divergent.

Proof. It can be assumed, without loss of generality, that T is such that T1,0 = {x0
i |

i = 1, . . . , N} and T2,0 = {x0
i | i = N +1, . . . ,M} , with N ∈ IN ∩ (0, M). Then, from (7),

(9), (4) and (23), and taking into account that, for j = 1, 2, fj is Lipschitz–continuous on

ωj , which is an open set with a Lipschitz–continuous boundary, we derive that

∀i = 1, . . . , N, lim
n→+∞

gn (x0
i ) = f1(c) ,

∀i = N + 1 . . . M, lim
n→+∞

gn (x0
i ) = f2(c) .

∣∣∣∣∣∣ (24)

On the other hand, writing in (12) j = 1 and k = 2, we have

X1n = µT
x2x2

(
M

M∑
i=1

x0
1ign(x0

i )−
( M∑

i=1

x0
1i

)( M∑
i=1

gn(x0
i )

))
−

µT
x1x2

(
M

M∑
i=1

x0
2ign(x0

i )−
( M∑

i=1

x0
2i

)( M∑
i=1

gn(x0
i )

))
.

(25)
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Separating the terms in which gn is evaluated in points of T1 from those in which gn is

evaluated in T2, taking limits and using (24), it follows that

lim
n→+∞

X1n =

µT
x2x2

(
Mf1(c)

N∑
i=1

x0
1i + Mf2(c)

M∑
i=N+1

x0
1i − Nf1(c)

M∑
i=1

x0
1i − (M −N)f2(c)

M∑
i=1

x0
1i

)
−

µT
x1x2

(
Mf1(c)

N∑
i=1

x0
2i + Mf2(c)

M∑
i=N+1

x0
2i − Nf1(c)

M∑
i=1

x0
2i − (M −N)f2(c)

M∑
i=1

x0
2i

)
.

Then,

lim
n→+∞

X1n = (M −N) N

(
f1(c)− f2(c)

)(
µT

x2x2
ξ1 − µT

x1x2
ξ2

)
, (26)

where, for j = 1, 2 ,

ξj =
1

N

N∑
i=1

x0
ji −

1

M −N

M∑
i=N+1

x0
ji . (27)

Analogously, we obtain

lim
n→+∞

X2n = (M −N) N

(
f1(c)− f2(c)

)(
µT

x1x1
ξ2 − µT

x1x2
ξ1

)
. (28)

Let us prove, arguing by contradiction, that lim
n→+∞

(X1n , X2n) 6= (0, 0) . So, suppose that

lim
n→+∞

X1n = lim
n→+∞

X2n = 0 . (29)

Obviously (M − N) N 6= 0 and, taking into account that c ∈ F , we derive that f1(c) −
f2(c) 6= 0 . Then, by (26), (28) and (29), we deduce that (ξ1, ξ2) is the solution of the

homogeneous system (
µT

x2x2
−µT

x1x2

−µT
x1x2

µT
x1x1

)(
ξ1

ξ2

)
=

(
0

0

)
,

whose coefficient matrix is regular and, in consequence, ξ1 = ξ2 = 0 . Then, by (27), it

follows that(
1

N

N∑
i=1

x0
1i ,

1

N

N∑
i=1

x0
2i

)
=

(
1

M −N

M∑
i=N+1

x0
1i ,

1

M −N

M∑
i=N+1

x0
2i

)
,

in contradiction with (22). Therefore, (29) is not true and then, taking into account (8),

(11) and (13), the theorem follows.

Theorem 4 Suppose that hypothesis (14) and the conditions in Theorem 3 with c ∈
∂ω1 \ F hold. Then, the sequence (JTn(f))n∈IN is bounded.
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Proof. We shall prove that the sequence (αf
1Tn

)n∈IN is bounded. For any n ∈ IN, taking

into account that f1(c) = f2(c) and (10), it follows that (25) can be written

X1n = M
N∑

i=1

(
µT

x2x2
(x0

1i − x0
1)− µT

x1x2
(x0

2i − x0
2)

)
(f1(x

n
i )− f1(c))

+ M
M∑

i=N+1

(
µT

x2x2
(x0

1i − x0
1)− µT

x1x2
(x0

2i − x0
2)

)
(f2(x

n
i )− f2(c)),

where, for j = 1, 2, x0
j =

M∑
i=1

x0
ji/M. Then, since fj is Lipschitz–continuous on ωj with

constant Lj, for j = 1, 2, we have

|X1n| ≤ ML1

N∑
i=1

∣∣µT
x2x2

(x0
1i − x0

1)− µT
x1x2

(x0
2i − x0

2)
∣∣ ‖xn

i − c‖

+ ML2

M∑
i=N+1

∣∣µT
x2x2

(x0
1i − x0

1)− µT
x1x2

(x0
2i − x0

2)
∣∣ ‖xn

i − c‖

and, using (7), we deduce that

|X1n| ≤
LM

Pn

M∑
i=1

∣∣µT
x2x2

(x0
1i − x0

1)− µT
x1x2

(x0
2i − x0

2)
∣∣ ∥∥x0

i − c
∥∥,

where Pn = min{P1n, P2n} and L = max{L1, L2}. Now, from (11), using (14), it follows

∃C > 0, ∀n ∈ IN,
∣∣∣αf

1Tn

∣∣∣ ≤ CL .

Analogously, (αf
2Tn

)n∈IN is bounded. The result is then a consequence of (13).

3.2 The main result

Suppose, for simplicity, that Ω = (a1, b1)× (a2, b2) ⊂ IR2 with µ(Ω) > 0.

For i = 1, 2, let ki ∈ IN, such that k1 + k2 6= 0, for j = 1, . . . , ki, let Ri
j ⊂ (ai, bi)

be a nonempty open interval, and let gi
j : Ri

j → IR be a piecewise–monotone, Lipschitz–

continuous function such that F i
j ⊂ Ω, where F i

j = {(x1, g
i
j(x1)) | x1 ∈ Ri

j}, if i = 1, and

F i
j = {(gi

j(x2), x2) | x2 ∈ Ri
j}, for i = 2. Assume that, for any (i1, j1) 6= (i2, j2), with

(il, jl) ∈ {1, 2} × {1, . . . , kl}, for l = 1, 2, F i1
j1
∩ F i2

j2
= ∅ is verified. Then we shall write

F =
⋃

j=1,...,ki
i=1,2

F i
j and Ω′ = Ω \ F .

Obviously, for any x ∈ F , there exists a unique pair (i, j) with x ∈ F i
j . Then, for any

x ∈ F , there exists a nonempty, open ball Bx ⊂ Ω, of centre x, such that the curve F i
j

passes through x and separates Bx into two connected regions, Bx
+ y Bx

−, which have not

any point of F in their interior.

Let f : Ω → IR. We shall write f ∈ LF(Ω) if, for any open subset ω ⊂ Ω′

with a Lipschitz–continuous boundary, f |ω is Lipschitz–continuous and, for any x ∈ F ,

lim
z→x

z∈Bx
+

f(z) 6= lim
z→x

z∈Bx
−

f(z), where Bx
− y Bx

+ are the regions associated with the ball Bx.
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From now on, for any c ∈ Ω, we suppose that an open ball Bc ⊂ Ω, of centre c, is

fixed such that there exists a curve γ = γc which passes through c and separates Bc into

two open sets with Lipschitz–continuous boundary, Bc
+ y Bc

−, and also that F ∩Bc ⊂ γ.

Theorem 5 Suppose that f ∈ LF(Ω). Let c ∈ Ω and (Tn)n∈IN be a sequence associated

with c as in Theorem 3, writing in (20) and (23), Bc, Bc
+ and Bc

− instead of ω, ω1 and

ω2, respectively. Suppose that hypothesis (14) holds. Then, the sequence (JTn(f))n∈IN is

divergent if and only if c ∈ F .

Proof. (i) For any c ∈ Ω it follows that, writing Bc, Bc
+ and Bc

− instead of ω, ω1 and

ω2, respectively, (19) is verified, where now ∂ω1 ∩ ∂ω2 = γ ∩Bc. On the other hand, since

f ∈ LF(Ω), it follows that the functions f |Bc
+

and f |Bc
−

are Lipschitz–continuous and, if

F ∩Bc = ∅, then f |Bc is also Lipschitz–continuous.

(ii) If c ∈ F , from point (i), we can apply Theorem 3 which implies that the sequence

(JTn(f))n∈IN is divergent. Conversely, suppose that (JTn(f))n∈IN is divergent. We shall

prove, arguing by contradiction, that c ∈ F . In fact, if c /∈F , obviously c ∈ γ \ F . Then,

if F ∩ Bc 6= ∅, Theorem 4 proves that (JTn(f))n∈IN is bounded and this leads to the

contradiction of the divergence of this sequence. Hence, F ∩Bc = ∅ and f |Bc is Lipschitz–

continuous. In this case, it is readily seen that there exists a closed rectangle, K ⊂ Bc,

which contains the point c and, from (7), it is deduced that there exists n0 ∈ IN such

that, for any n ∈ IN, n ≥ n0, Tn ⊂ K .

Now, taking into account that f |K is Lipschitz–continuous and applying Theorem

2, we deduce that (JTn(f))n∈IN is bounded in contradiction with the divergence of this

sequence. As a consequence, we deduce that c ∈ F , ending the proof.
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