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Abstract

We present a method to reduce a polynomial Hamiltonian PDE H to a Hamil-

tonian ODE in n degrees of freedom under some conditions that the quadratic part

of H must satisfy. The technique is based on the construction of adequate normal

forms for PDEs and generalises the one given by A. Mielke. We apply this procedure

to an example of nonlinear PDEs.
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1 Introduction

This work deals with the construction of formal changes of variables for special types of

PDEs with the aim of transforming these PDEs into equivalent ODEs up to a certain

order of approximation. The approach for the general case (including dissipative and

symplectic situations) appears for the first time in [8] and rigorous results will be given in

reference [9]. Here we focus on the Hamiltonian context, outlining some specific aspects

of the reduction process for Hamilton PDEs.

Specifically, given an n–degree–of–freedom Hamiltonian function, one can introduce

formal (and continuous) integrals (also called symmetries or constants of motion) by

means of truncated changes of variables. This approach can be extended almost nat-

urally to partial differential equations of Hamiltonian nature. Indeed, after expressing

the partial differential equation as a system of infinite ordinary differential equations

(Hamiltonian equations with infinite degrees of freedom), it is usually possible to build a

normal form transformation such that the number of formal integrals introduced in the

process is infinite. In these circumstances the partial differential equation gets reduced to

a Hamiltonian differential equation having a finite number of degrees of freedom.
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Our technique generalises two methods: on the one hand, the centre manifold reduction

procedure for Hamiltonians, which allows to transform some PDEs to ODEs [6]; on the

other hand, the Birkhoff normal form setting for Hamiltonian PDEs [10]. Note that these

two methods can be readily derived from the formal symmetry approach we propose.

The present work contains theoretical results for Hamiltonian PDEs without justi-

fication. The proof of the main theorem we give here will appear elsewhere [9]. The

note has three sections. In Section 2 we establish the method to reduce Hamiltonians in

infinite dimensions, extending thereafter the procedure to take into account PDEs with

dissipative terms. In Section 3 we illustrate our method by applying it to the nonlinear

Schrödinger equation, showing how the introduction of infinite asymptotic integrals allows

us to transform the equation into a nonlinear ODE.

2 Reduction of Infinite–Dimensional Hamiltonians to

Finite–Dimensional Hamiltonians

As each type of Hamiltonian PDE is defined on a different infinite–dimensional phase

space, we prefer to present the results in a generic context. Afterwards, we shall particu-

larize for the example of Section 3.

Given two scalar functions P and Q depending on infinite coordinates x = (x1, . . . , xn,

. . .) and their associate moments X = (X1, . . . , Xn, . . .), we define their infinite Poisson

bracket as the formal bilinear operator {P , Q} =
∑∞

i=1 ( ∂P
∂xi

∂Q
∂Xi

− ∂P
∂Xi

∂Q
∂xi

). Now, we state

the following result:

Theorem 2.1 (Normal form Theorem for Hamiltonian PDEs) Let H(x,X) = H2 +H3 +
1
2
H4 + . . . be an infinite–dimensional Hamiltonian in the coordinates x = (x1, . . . , xn, . . .)

and conjugate moments X = (X1, . . . , Xn, . . .) coming from a nonlinear PDE, such that,

for i ≥ 2, Hi is an infinite homogeneous polynomial in x and X of degree i with arbitrary

real (or complex) coefficients. Let Tj(x,X), with j ≥ m + 1 (for some m ∈ N) be infinite

linear–independent integrals of H2 (i.e., {H2, Tj} = 0, ∀j ≥ m + 1). Let Ki be some

Hamiltonians in x and X satisfying {Ki, Tj} = 0, ∀j ≥ m + 1, ∀i ≥ 2 and such that the

homology equation

{Wi+2,H2} = H̃i+2 −Ki+2

has a solution Wi+2 for i ≥ 1. Note that H̃i+2 represents terms known from previous

orders.

In such circumstances there is a symplectic formal change of variables (x,X) → (y,Y)

which transforms H into Hamiltonian K = K2 + K3 + 1
2
K4 + . . ., where K defines a

Hamiltonian system of m degrees of freedom and K2 = H2. Moreover, it is usually possible

to construct explicitly K and the change of variables up to a certain degree M ≥ 3.
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Proof It will appear in reference [9].

We stress that indeed the reduction to a finite (symplectic) manifold is possible since,

by virtue of the normal form transformation, we introduce an infinite number of formal

integrals (the functions Tj) in the Hamiltonian K or, in other words, we construct K in

such a way that it has an infinite set of independent integrals. Furthermore, with the aid

of the generating function W = W3 + W4 + . . ., we are allowed to calculate the formal

integrals of the original Hamiltonian, following (at least formally) the same procedure

that the one we use for Hamiltonian ODEs, see for instance [7].

We also remark that if A represents the infinite–dimensional matrix associated to the

quadratic Hamiltonian H2 with eigenvalues λ1, λ2, . . . , λn, . . . ∈ C (that is, A = J B

with J an infinite skew–symmetric matrix and B an infinite symmetric matrix with

real entries) then, whether the number of eigenvalues with null real part is finite, say

2 m, the latter result gives the reduction of the original PDE to the Hamiltonian centre

manifold of dimension 2 m, see details in [6]. Moreover, if the number of eigenvalues

λi with positive (negative) real part is finite, Theorem 2.1 represents the reduction to

the unstable (stable) manifold. In addition to this, if a finite number of eigenvalues

satisfy adequate nonresonant conditions then, it is possible the reduction to other finite–

dimensional manifolds, which are a combination of the local centre, stable and unstable

manifolds.

If H2 is an infinite linear combination of oscillators and diffusors, our result represents

a Birkhoff normalisation procedure for PDEs, which yields Hamiltonian ODEs. Two

references dealing with Birkhoff normal forms for Hamiltonians in Rn are [2] and [5]. The

extension to infinite dimensions is straightforward, at least from a pure formal standpoint.

On this occasion, the homology equation of Theorem 2.1 is readily satisfied for polynomials

W and K, due to the specially easy form acquired by the Lie operator {·,H2}.
Let us emphasize that Hamiltonian K is defined on a phase space whose dimension is

2 m. The construction of such phase space must be done extending the results already

established for the finite case, see for example the paper by Walcher [11]. The original

PDE is defined over an infinite–dimensional phase space, usually a Hilbert space that we

call `. Associated to the infinite integrals Tj there is an infinite–dimensional Abelian Lie

subgroup G of GL(`) (the Lie group of infinite–dimensional square invertible matrices

with real entries). Now we can define a smooth mapping % between ` and G (the so–

called reduction map), and pass from ` to a finite–dimensional space, the orbit space,

which is defined through % as the quotient space `/G. Note that since both ` and G are

infinite–dimensional and we have an infinite number of constants of motion, the variables

which are not constants in `/G are related to the m degrees of freedom. Indeed, the

orbit space `/G has dimension 2 m and is parameterized by the infinite first integrals
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constructed from the constants of motion Tj, as those linearly–independent polynomials

satisfying {ϕi, Tj} = 0, 1 ≤ i ≤ k (for some finite k) and j ≤ 2 m + 1. The phase space

`/G can be a regular hypersurface or can have singularities, depending on the nature of

the reduction map.

3 The Nonlinear Schrödinger Equation

Our next task is to apply the latter theory to the nonlinear Schrödinger equation, which

represents an important class of complex nonlinear Hamiltonian systems arising in quan-

tum mechanics [1]. The equation

ı ut = ux x − r u− f(|u|2) u,

is defined on the finite x–interval [0, π] with Dirichlet boundary conditions

u(t, 0) = 0 = u(t, π), −∞ < t < ∞.

Symboil ı stands for the imaginary unity. The parameter r is real and f is real analytic

in some neighbourhood of the origin in C. We also assume that f(0) = 0 and require f

to be nondegenerate, i.e. such that f ′(0) 6= 0. Furthermore we suppose that the sign of

f ′(0) is positive. After rescaling u it yields:

ı ut = ux x − r u− |u|2 u +O(u5).

Next we follow the paper by Kuksin and Pöschel [4]. As the boundary conditions are

of Dirichlet’s type we choose the phase space as W 1
0 ([0, π]), i.e. the Sobolev space of all

complex–valued L2–functions on the interval [0, π] with an L2–derivative and vanishing

boundary values. Next we take the inner product

〈u, v〉 = Re
∫ π

0
u v̄ d x,

and the Hamiltonian

H = 1
2
〈A u, u〉+ 1

2

∫ π

0
g(|u|2) d x,

where A = −d2/d x2 + r and g a primitive of f . Then, Equation (3) can be written as

d u

d t
= ı∇H(u),

where the gradient of H is taken with respect to 〈·, ·〉.
We rewrite H as a Hamilton function in infinitely many coordinates by making the

following ansatz based on standard Fourier series:

u =
∑
j≥1

qjφj, φj =
√

2
π

sin (j x), j ≥ 1.

456



The latter coordinates belong to the Hilbert space `a,p of all complex–valued sequences

q = (q1, . . . , qn, . . .) with norm

‖q‖2
a p =

∑
j≥1

|qj|2j2 p exp (2 j a) < ∞,

where a > 0 and p > 1
2

will be fixed later. If λj, j ≥ 1, represents the eigenvalues of A,

we have that λj = j2 + r, arriving finally at

H = 1
2

∑
j≥1

λj |qj|2 + 1
2

∫ π

0
g(
∑
j≥1

qjφj) d x,

on the phase space `a,p. The equations of motion associated to H are:

dqj

dt
= 2 ı

∂H

∂q̄j

, j ≥ 1.

The above corresponds to the equations of motion of a Hamiltonian in complex variables qj

which can be split into real and imaginary parts by taking into account that qj = xj +ıXj.

The first term of Eq. (3) corresponds to the linear part of H, whereas the second term

refers to the nonlinearity. The relevant part of the nonlinear terms is related to |u|2 u and

can be written as

1
2

∫ π

0
g(
∑
j≥1

qjφj) d x = 1
4

∑
j,k,l,m

Gjklmqj qk q̄l q̄m,

with

Gjklm =
∫ π

0
φj φk φl φm d x.

It is proven in [4] that Gjklm = 0 unless j±k± l±m = 0, e.g. only a codimension–one set

of coefficients is actually different from 0. We can conclude that the above sum extends

only over j ± k ± l ±m = 0.

The validity of H as a vector field on `a,p is analysed in [4] and we do not detail here.

Therefore, we can take H as the starting point to perform the reduction process and apply

Theorem 2.1.

At this point Kuksin and Pöschel apply Birkhoff normal form theory to H, arriving

at an integrable normal form K, which contains terms of degree two and four in qj.

However, we propose another transformation valid for a constant parameter r < 0. This

constraint implies that some eigenvalues λj are negative. More specifically, the number of

nonpositive eigenvalues of A is [
√
−r] (symbol [·] denotes the integer part). In fact, these

eigenvalues are all negative excepting for the case −r = n2 for some n ∈ N. In this latter

situation we have [
√
−r]− 1 negative eigenvalues plus one null eigenvalue.

Our goal is to apply Theorem 2.1 so that we reduce Hamiltonian H into a Hamiltonian

K with a finite number of degrees of freedom. Concretely, taking r ∈ (−m− 1,−m) with

m ∈ N we assure that K is a Hamiltonian of dimension 2 [
√
−r] and we can reduce H to
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its stable manifold K. The computation will be carried out only to second order (quartic

terms) although higher–order Hamiltonians can be also derived.

We define a complex symplectic change of coordinates in order to resolve the homology

equation at every order. This is given through:

xj = 1√
2
(vj + ı Vj), Xj = 1√

2
(ı vj + Vj), ∀ j ≥ 1.

Henceforth, the quadratic part of H = H2 + H4 reads as:

H2(v,V) = ı
∑
j≥1

λj vj Vj, H4(v,V) = −
∑

j±k±l±m=0

GjklmVj Vk vl vm,

where v = (v1, . . . , vn, . . .) and V = (V1, . . . , Vn, . . .). In addition to this we have H3 = 0

and Hj = 0 for all j ≥ 5 as we only are interested in a second–order theory, e.g. in terms

up to degree M = 4.

Note that the terms Tj = vj Vj, j ≥ 1 are the integrals associated to H2. However, since

we are interested in the Hamilton function K as a function of the first [
√
−r] variables,

the normal form we compute is such that Tj with j ≥ [
√
−r] + 1 are the new integrals of

K.

According to the form of H2, the homology equation to be solved at each order i ≥ 1

is:

ı
∑
j≥1

λj

(
vj

∂ Wi+2

∂ vj

− Vj
∂ Wi+2

∂ Vj

)
= H̃i+2 −Ki+2.

Now, we can establish the criterion to obtain Ki+2 together with its associated generator

Wi+2 at each order i ≥ 1. Indeed, given a monomial of degree i + 2: pi+2(v,V) =

αi v
j1
1 V k1

1 vj2
2 V k2

2 . . . vjn
n V kn

n . . ., i.e.
∑

n≥1(jn +kn) = i+2, then pi+2 belongs to ker{·,H2},
if and only if the finite sum si+2 =

∑
n≥1 λn(jn−kn) ≡ 0. According to the requirements of

the normal form transformation we are building up, pi+2 is incorporated to Ki+2 whenever∑
n≥[

√
−r]+1 λn(jn − kn) ≡ 0, otherwise it goes to the generator as the term ı pi+2/si+2.

Notice that due to the form of λi, the monomial si+2 cannot vanish.

We start by identifying K2 with H2 and making K3 = W3 = 0. So, for i = 2, we

need to determine K4 and W4. As H4 is formed by linear combinations of fourth–degree

monomials in the moments Vi, thus K4 has to be:

K4 = −
∑

j±k±l±m=0
1≤j,k,l,m≤[

√
−r]

GjklmVj Vk vl vm −
∑

j±k±l±m=0
j,k,l,m≥[

√
−r]+1, {j,k}={l,m}

GjklmVj Vk vl vm.

Hence, taking into consideration that the antiimage of every monomial of degree four

p4 = GjklmVj Vk vl vm is ı p4/s4 with s4 = −λj −λk +λl +λm, we conclude that W4 yields:

W4 = ı
∑

j±k±l±m=0
j,k,l,m≥[

√
−r]+1, {j,k}6={l,m}

Gjklm

λj + λk − λl − λm

Vj Vk vl vm.
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We stress that λj +λk−λl−λm = j2 +k2− l2−m2 6= 0 provided that {j, k} 6= {l,m} (see

reference [4]), therefore small denominators do not occur. For i = 3 we have K5 = W5 = 0

and straightforward computations will determine K6 and W6 and the process can be

continued to degree six. However we do not pursue this as details will appear in [9]. The

convergence of our approach is not discussed, but it follows similar steps to those used

in [4].

Our normal form differs from that of [4], as the Hamiltonian we calculate has [
√
−r]

degrees of freedom (corresponding to the terms of K4, with indexes j, k, l and m not

bigger than [
√
−r]) whereas the one determined by Kuksin and Pöschel is of zero degrees

of freedom. Hence, the subsequent analysis of K = K2 + K4 would yield new results

which will help to the better understanding of the dynamics of the nonlinear Schrödinger

equation. For example, from K one can calculate explicitly up to degree M the k–invariant

tori with 1 ≤ k ≤ [
√
−r] and may use KAM techniques. It is also possible to recover the

original variables by using the direct change of coordinates, see [3].

One can also perform a numerical integration of the Hamilton equations associated to

K with a well–suited method for finite–dimensional Hamiltonian systems (perhaps with

continuous output), and make use of this to obtain precise expressions of the coordinates

of the initial Schrödinger equation in a neighbourhood of the origin. By doing so one has

a semianalytical integration of the original PDE.

There are many Hamiltonian PDEs where these results apply: water waves, defor-

mations of beams, inviscid channel flows, diffusion in pipes, etc, see references [1, 6].

The theorems we propose will be demonstrated in [9] using norms in appropriate Hilbert

spaces.
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