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Abstract

Lie transformations are commonly used to simplify dynamical systems through

asymptotic changes of variables in such a way that the main qualitative features

of the original system are preserved. For instance, by means of the analysis of

the transformed system one can obtain explicit expressions of periodic orbits or

invariant tori of the original one. These transformations are not convergent, in

general; nevertheless it is possible to calculate upper bounds of the error of the

truncation. What we propose here is an easy but effective way to make an estimation

of this error. The central idea is to compose the inverse and direct transformations.

In order to illustrate our procedure, some examples of applications to dissipative,

as well as Hamiltonian systems, are shown.
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1 Motivation and Scope

Lie transformations [2, 5] are commonly used to simplify dynamical systems, as they

provide asymptotic changes of variables such that the main qualitative features of the

original system are preserved. For instance, by means of the analysis of the transformed

system one can obtain explicit expressions of periodic orbits or invariant tori of the original

one.

In reference [8] we present a method to calculate invariant manifolds of dynamical

systems which are defined through an m–dimensional vector field. The technique is based

on the calculation of formal symmetries and generalized normal forms associated to this

vector field making use of Lie transformations for ordinary differential equations. Once a

symmetry is determined up to a certain order, a reduction map allows us to determine the

corresponding orbit space and construct in it the equation in normal form, which is the

so–called reduced system (of dimension s < m). Then, a non–degenerate p–dimensional
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invariant set of the reduced system (i.e. a critical point, closed trajectory or nD–invariant

torus) is transformed, asymptotically, into a (p + m− s)–dimensional invariant set of the

departure equation.

These transformations are not convergent, but they diverge in general. Nevertheless,

in practice one truncates the transformation at a given order. The first terms of the

resulting reduced system can provide a very useful information of the original system. If

one has a procedure to control the error of the transformation when truncating at a certain

order, one can determine the validity of the transformation. In this sense it is possible to

calculate upper bounds of the error of the truncation. There are several methods in the

literature [3, 4], although they give estimates and upper bounds for a quite narrow class

of perturbed differential equations.

Lie transformations provide explicit expressions of the asymptotic changes of variables

which allow to pass to the reduce system. Moreover they give also explicit expressions

to go back to the original system. What we propose here is an easy but effective way

to make an estimation of the error. The central idea of our proposal is to compose the

inverse and direct Lie transformations. In order to illustrate the results of this procedure

we will estimate the error of a transformation of the type presented in [8] applied to some

examples of dissipative, as well as Hamiltonian systems.

The structure of the Paper is as follows. In Section 2 we recall the method used

to calculate generalized normal forms [8] giving the Lie transformations involved in it.

Section 3 contains the central result: the method to estimate the error. We finish with

the examples, which appear in Section 4.

2 Generalized Normal Forms

Let us consider the vector field

dx

d t
= F(x; ε; c) =

L∑
i=0

εi

i!
Fi(x; c), (1)

where ε and c are parameters and x,y ∈ Rm. We intend to perform an asymptotic change

of variables x → y so as to transform (1) into the vector field

dy

d t
= G(y; ε; c) =

M∑
i=0

εi

i!
Gi(y; c) +O

(
εM+1

)
, (2)

in such a way that G0 ≡ F0 and M ≥ L. In Section 3 we will give a rigorous estimate

of the error committed after truncating this transformation at order M . The calculation

of (2) is based on the following Theorem [8]:
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Theorem 2.1 Let M ≥ 1 and {Pi}M
i=0, {Qi}M

i=1, {Ri}M
i=1 be sequences of vector spaces of

analytic functions in x ∈ Rm defined on a common domain Ω ⊆ Rm and let T ≡ T(x)

be a smooth vector field in some {Pi}M
i=0 satisfying:

i) Qi ⊆ Pi, i = 1, . . . ,M ;

ii) Fi ∈ Pi, i = 0, 1, . . . ,M ;

iii) [Pi , Rj ] ⊆ Pi+j, i + j = 1, . . . ,M ;

iv) for any D ∈ Pi, i = 1, . . . ,M , there are E ∈ Qi and K ∈ Ri such that:

E = D + [F0 , K ] and [E , T ] = 0.

Under such conditions there is a vector field

W(x; ε) =
M−1∑
i=0

εi

i!
Wi+1(x),

with Wi ∈ Ri, i = 1, . . . ,M , such that the change of variables x = X(y; ε) is the general

solution of the initial value problem:

dx

d ε
=

∂W

∂x
(x; ε), x(0) = y,

and transforms the convergent vector field

F(x; ε) =
L∑

i=0

εi

i!
Fi(x),

into the convergent vector field

G(y; ε) =
M∑
i=0

εi

i!
Gi(y) +O(εM+1), (3)

with Gi ∈ Qi and [Gi , T ] = 0, i = 1, . . . ,M . Besides, if [F0 , T ] = 0 then T ≡ T(y)

is a formal symmetry of G.

The notation [ · , · ] represents the Lie bracket of two vector fields, that is, if ∂A/∂y and

∂A/∂y are square Jacobian matrices associated to the vector fields A and B respectively,

one has

[A , B ] =
∂B

∂y
A− ∂A

∂y
B.

The construction of (3) is made step by step. In each order i = 1, . . . ,M we have

to calculate Gi and another vector field Wi, which corresponds to the i–th term of the

so–called generating function of the transformation W. For this purpose one has to solve

the homology equation

[F0 , Wi ] + Gi = F̃i,
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where F̃i denotes the vector fields computed in the previous steps. We look for Gi such

that [Gi , T ] = 0. For that, we split F̃i = F̃#
i + F̃&

i , where [ F̃#
i , T ] = 0. Then, we

identify Gi = F̃#
i and F̃&

i = F̃i − F̃#
i . The vector field Wi is a solution of the system of

partial differential equations [F0 , Wi ] = F̃&
i .

Once we have calculated the generating function W, we use it to build the direct and

inverse changes of variables. The transformation x = X(y; ε) relates the “old” variables

x with the “new” ones y and is a near–identity change of variables. Explicitly, the direct

change is given by

x = y +
M∑
i=1

εi

i!
y

(i)
0 , (4)

where y
(0)
i ≡ 0 for i ≥ 1, y

(0)
0 ≡ y and

y
(j)
i = y

(j−1)
i+1 +

i∑
k=0

(
i

k

)
(y

(j−1)
k , Wi+1−k ).

The notation ( , ) means the operator (g1 , g2 ) = (∂g1/∂y)g2.

Similar formulae can be used to obtain the inverse transformation: y = Y(x; ε), which

relates the “new” variables y with the “old” ones x:

y = x +
M∑
i=1

εi

i!
x

(i)
0 , (5)

where x
(i)
0 ≡ 0 for i ≥ 1, x

(0)
0 ≡ x and

x
(j)
i = x

(j+1)
i−1 +

i−1∑
k=0

(
i− 1

k

)
(x

(j)
i−k−1 , Wk+1 ).

With these two transformations it is possible to pass from the original system to the

reduced one and viceversa.

3 Estimation of the Error

In order to obtain the error estimation of the Lie transformations constructed in the

previous section we can either compose the direct change of variables given by (4) with

its inverse change (5) or vice versa. By doing so we get a vector field which depend

on the original variables (if we have started the composition with the direct change) or

on the transformed variables (if we have composed the inverse change with the direct

one). The vector field resulting out of the composition is also a function of the small

parameter ε. Moreover, as the changes we construct are asymptotics, the composition is

also an asymptotic expression in terms of ε which is built from the explicit formula of the

changes.
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Given a vector field S(x; ε) depending on the x variables, we transform it by ap-

plying a Lie transformation, up to order M . In this way we can express S as a func-

tion of the variables y using the direct change (4): S(x; ε) = S(X(y; ε); ε). Now, we

can reverse the transformation in order to recover the original vector field S as a func-

tion of the “old” coordinates x. For that, we apply the inverse change of variables (5):

S∗(x; ε) = S(X(Y(x; ε); ε); ε). If the transformation were exact, S∗(x; ε) ≡ S(x; ε), but

unfortunately it is not the usual case. Nevertheless, we know that S∗ − S has size εM+1.

Now, if we take S as the identity map, we arrive at an estimation of the global error

E(x; ε), yielding

E(x; ε) = ‖X(Y(x; ε); ε)− x‖ = O(εM+1),

on a time–scale 1/ε, i.e. for t ∈ [0, C/ε] and a certain C > 0, see for instance [1], as is

predicted by the standard time–estimate provided by the near–identity transformations

and averaging theory, see for instance [1]. From the construction of the Lie transformation

the error will is an expression such that its main term is factored by εM+1, that is,

E(x; ε) = εM+1 EM+1(x; ε) +O(εM+2).

Once the expression for EM+1(x; ε) is calculated we still need to determine also a range

of validity for x such that EM+1 remains of order εM+1. As this cannot be ensured a

priori, one needs to make the corresponding composition of changes for each particular

situation, as we show in next section.

4 Applications

In this section we show the results given by the procedure explained in Section 3 to

estimate the global error committed in three Lie transformations.

4.1 A stiff system in the plane

We consider the following two–dimensional problem:

d x1

d t
= −2 x1 + x2 + ε (−2 x2

1 + x2
2),

d x2

d t
= 998 x1 − 999 x2 + ε (x2

1 + x1 x2 + x2
2),

with x1(0) = 1/2, x2(0) = 3/5 and ε = 10−4. This system has been studied in refer-

ence [6]. There Theorem 2.1 is used to transform the initial differential equation into

another one–dimensional system. (Note that since the equations are autonomous, a one–

dimensional differential equation is integrable at least by quadratures.) Here we outline

the transformation and give an estimation of the error. For details, see [6].

In order to apply Theorem 2.1 so as to reduce the initial system to an equivalent

one, but with dimension one, we choose T(x) = T x, where T = diag {−1000,−1}. The
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resulting system is:
d z

d t
= T z + ε (z

999/1000
1 z2, 0)t,

where z = (z1, z2)
t are the “new” variables.

The generator W(z) = (W1(z), W2(z))
t of the Lie transformation is the following:

W1(z) = −498001
500

z2
1 − 2000 z1 z2 − 1

998
z2
2 + 1

1000
, z

999/1000
1 z2 log z1,

W2(z) = −995007
1999

z2
1 − 2991

1000
z1 z2 − 3 z2

2 .

With this we can calculate the direct change of variables (4):

x1 = z1 − ε
(

498001
500

z2
1 + 2000 z1 z2 + 1

998
z2
2 − 999

1000
z

999/1000
1 z2 log z1

)
,

x2 = z2 − ε
(

995007
1999

z2
1 + 2991

1000
z1 z2 + 3 z2

2

)
,

as well as the inverse (5) one:

z1 = x1 + ε
(

498001
500

x2
1 + 2000 x1 x2 + 1

998
x2

2 − 999
1000

x
999/1000
1 x2 log x1

)
,

z2 = x2 + ε
(

995007
1999

x2
1 + 2991

1000
x1 x2 + 3 x2

2

)
.

If we take ε = 10−4 and z satisfies that max {|z1|, |z2|} ≤ 1, we have that E(z) ≤ 1.79177×
10−8, which is an error of the order ε2, as it should be, because the Lie transformation

has been carried out up to first order.

4.2 Lorenz equation

Now we consider the Lorenz system which represents a three–dimensional differential

equation. It is used to model the convection in the atmosphere of the Earth. In the

context of generalized normal forms this problem has been studied in [6] and [7]. Here

we make an outline of the methodology and the results, but we do not show the details

or the calculations. For that aspect the reader is addressed to references [6, 7].

The equations of the system are the following:

d x1

d t
= 10 (x2 − x1),

d x2

d t
= 28 x1 − x2 − x1 x3,

d x3

d t
= x1 x2 −

8

3
x3.

We intend to reduce the system in one dimension by means of the application of

Theorem 2.1. For that, first of all we diagonalise the linear part and introduce a small

parameter ε as follows: x = (x1, x2, x3)
t → εy = ε (y1, y2, y3)

t. Then, we choose T = T y

with T = diag {1,
√

2, 0}. At this moment we apply Theorem 2.1 arriving at the following

(two–dimensional) reduced system:

d z1

d t
= −8

3
z1 + ε (−9+

√
1201)

56
z2
3 − ε3 238268911748107+3427671328157

√
1201

3389702400 (32622739+543621
√

1201)
z4
3 ,

d z2

d t
= −11+

√
1201

2
z2 + ε2 3 (1893759619−24165531

√
1201)

10117320080 (25+3
√

1201)
z3
3 ,

d z3

d t
= −11+

√
1201

2
z3 + ε2 15 (1201−1689

√
1201)

134512 (25+3
√

1201)
z3
3 ,
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where z = (z1, z2, z3)
t are the “new” coordinates coming out from the Lie transformation.

This asymptotic change of variables has been carried out up to third order. Now, if we

choose ε = 10−2 and ‖x‖ ≤ 0.1, then the global error is E(x) ≤ 1.33969 × 10−7, which is

valid on a time–scale t ≈ 100.

4.3 Rydberg atom

Finally we have chosen a problem from Physics. This is the Hydrogen atom in crossed

electric and magnetic fields. In [9] we studied the transition state in reaction dynamics

and particularized the results for this example. For achieving that, we calculated the

normal form associated to the system. This is the reduction to the central manifold. Here

we estimate the global error of this transformation. The details of the computation of

the normal form and the subsequent determination of the normally hyperbolic invariant

manifold, together with its stable and unstable manifolds, can be found in [9].

The problem is formulated as the following 3DOF Hamiltonian system:

H = 1
2
(P̂ 2

1 + P̂ 2
2 + P̂ 2

3 )− 1
R + 1

2
(x̂1P̂2 − x̂2P̂1) + 1

8
(x̂2

1 + x̂2
2)− ε x̂1 − ε1/2,

where R = ((x̂1 − xs)
2 + x̂2

2 + x̂2
3)

1/2 and xs = −ε−1/2, with ε a small parameter.

First of all we expand H in Taylor series up to polynomials of degree 8 in the form:

H′ = H + 2ε
1
2 =

8∑
n=2

Hn,

where each Hn is a homogeneous polynomial in (x̂, P̂) of degree n + 2. The normal form

has been calculated up to order 6 in ε with the goal of determining the normally hyperbolic

invariant manifolds of the origin.

We have estimated the global error of the transformation taking ‖(x̂, P̂)‖ ≤ 10−2 —

which is enough for our computation concerning transition state theory — and ε = 0.58.

In the table below we show the error when the transformation is carried out from order

1 to order 6:
order 1 7.51681572767062× 10−7

order 2 7.440374042482777× 10−9

order 3 1.3601828348825097× 10−10

order 4 2.2895973941086116× 10−12

order 5 3.813254946932333× 10−14

order 6 5.676373185504885× 10−16

Let us note that for the 6th order, each term of the composed series has around 13000

monomials, this is the reason why we omit the expressions here.
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