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Abstract

In this work we study the existence of linear shape preserving polynomial opera-

tors of the form K(f) =
∑n

i=0 λi 〈f,Qi〉S Qi, where Qi are orthogonal polynomials

with respect to the inner product 〈f, g〉S =
∫ 1
−1 f (x)g(x)dx + Mf ′(c)g′(c) with

M > 0 and c ∈ [−1, 1].

We show some difficulties that appear when c ∈ (−1, 1) and prove that for

c = ±1 and for any k ∈ {1, . . . , n} there exist values λi such that K|Pk
= 1|Pk

and

K preserves the j-convexity for j ∈ {k, . . . , n}.
Keywords: Sobolev-type inner product, conservative approximation.

AMS Classification: 41A30, 41A10

1 Introduction

The polynomial approximation using inner products is not used to preserve the shape

properties of the functions. Nevertheless, there exist shape preserving polynomial ope-

rators whose proper functions are orthogonal polynomials with respect to certain inner

product. These operators can be written in the form

Kn(f) =
n∑

i=0

λi
〈f, Pi〉
〈Pi, Pi〉

Pi, (1)

where Pi are orthogonal polynomials with respect to the inner product 〈·, ·〉 and λi > 0 are

the associated proper values. As an example, if we consider the Legendre inner product

and the Jacobi one, then we obtain respectively the operators of Bernstein-Durrmeyer-

Derriennic and the ones of Bernstein-Jacobi.

Let Ci(I) be the set of all real valued functions defined on I = [−1, 1] with continuous

i-th derivative. We denote by Di the i-th differential operator, and by deg(p) and lc(p)

the degree and the leader coefficient of the polynomial p = p (x) respectively.

†This work is partially supported by Junta de Andalućıa, FQM-0178, and Ministerio de Ciencia y

Tecnoloǵıa, BFM 2000-911.
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A function f ∈ Ci(I) is said to be i-convex if Dif(x) ≥ 0 for all x ∈ I. A linear

polynomial operator (LPO) K preserves i-convexity if it maps i-convex functions onto

i-convex polynomials.

In [5] it is shown that, with the use of classical inner products, for any n = 0, 1, . . . ,

and any j = 0, 1, . . . , n, there exist λi > 0 such that Kn preserves the i-convexities for

i = j, . . . , n and it is the restriction of the identity operator to the spaces of polynomials

of degree less than or equal to j, that we denote by Pj.

As the Sobolev-type inner products consider the values of the function and its deriva-

tives, then one could find them appropriate to preserve the sign of the derivatives (see

[3, 4]).

In this work we consider inner products of the form

〈f, g〉S =

∫ 1

−1

f (x)g(x)dx + Mf ′(c)g′(c) (2)

where M > 0 and c ∈ [−1, 1], and we prove that:

1) when c = 1,−1 one obtains results similar to the ones obtained with other Sobolev-

type inner products.

2) for certain values of c ∈ (−1, 1) it is not possible to find operators that preserve

2-convexity and/or 3-convexity.

Moreover, we show examples with certain values of c ∈ (−1, 1) in which the best

approximation of a convex function by polynomials of P2 is a concave one. Analogously

with 3-convex functions in P3.

On the other hand, if in (1) the leader coefficient of Pn is positive and f is n-convex,

then the inequality 〈f, Pn〉 ≥ 0 is a necessary and sufficient condition for Kn(f) to be

n-convex.

Example 1. Let I = [−1, 1], let W (I) =
{
f ∈ C (I) : ∃f ′(1

2
)
}

endowed with the inner

product

〈f, g〉S =

∫ 1

−1

f (x)g(x)dx + f ′(1
2
)g′(1

2
) (3)

and let Q0, Q1, Q2 be the first three orthogonal polynomials with respect to (3) and with

positive leader coefficient. An operator of the type K2(f) = λ0 〈f, Q0〉S Q0+λ1 〈f, Q1〉S Q1+

λ2 〈f, Q2〉S Q2 with λi ∈ R+ cannot preserve the 2-convexity. Indeed, it suffices to consider

the function

f (x) =

{
0 if − 1 ≤ x ≤ 1

2(
x− 1

2

)4
if 1

2
≤ x ≤ 1.

We can find analogous results whenever for fixed values of c ∈ (−1, 1) and M in (2)

there exists n such that Qn(1) ≤ 0.
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Example 2. If c ∈ (−1, 1) and Qn (1) ≤ 0 we define the function

f (x) =

{
0 if − 1 ≤ x ≤ r

(x− r)n+2 if r ≤ x ≤ 1

where r = max {c, γ}, γ denoting the greatest root of Qn(x) in (−1, 1). Clearly, Dnf (x) ≥
0 for all x ∈ [−1, 1], f ′ (c) = 0 and Qn(x)f(x) < 0 for all x ∈ (r, 1] . Hence, 〈f, Qn〉S < 0.

Example 3. Let W (I) =
{
f ∈ C (I) : ∃f ′(3

4
)
}

endowed with the inner product (2) with

c = 3
4

and M = 1
2
. Let Q0, Q1, Q2 and Q3 be the first four orthogonal polynomials with

positive leader coefficient. The operator K3 defined by K3 (f) =
∑3

i=0 λi 〈f, Qi〉Qi with

λi ∈ R+ preserves the 2-convexity whenever (K3(f))′′ = λ2 〈f, Q2〉S Q′′
2 +λ3 〈f, Q3〉S Q′′

3 ≥
0 for all 2-convex function f . If we take

f (x) =

{
0 if − 1 ≤ x ≤ 3

4(
x− 3

4

)4
if 3

4
≤ x ≤ 1

one can check easily that 〈f, Q2〉S and 〈f, Q3〉S are negative, and Q′′
2(1) > 0, Q′′

3(1) > 0.

Hence (K3(f))′′ (1) = λ2 〈f, Q2〉S Q′′
2(1) + λ3 〈f, Q3〉S Q′′

3(1) < 0.

Finally, in what follows, we prove that when c = 1 or c = −1, if we take any M > 0

in (2), then the existence of conservative operators of the type (1), associated to the

corresponding system of orthogonal polynomials, is guaranteed.

2 Preliminaries.

Let us consider the space Cn[−1, 1] equipped with the inner product

〈f, g〉S =

∫ 1

−1

f (x)g(x)dx + Mf ′(1)g′(1) (4)

with M > 0.

Let {Pn}n≥0 and {Qn}n≥0 be the systems of monic orthogonal polynomials (SMOP)

with respect to the inner products of Legendre and the one given in (4) respectively. For

the sake of clarity we have written {Qn}n≥0 instead of
{

Q
(M)
n

}
n≥0

.

Clearly, it holds that for k = 0, 1, Qk = Pk.

In [2] we can find that

Q′
n (1) =

P ′
n(1)

1 + M K
(1,1)
n−1 (1, 1)

> 0 (5)

for each n ≥ 2, where K
(r,s)
n (x, y) represents ∂r+s

∂xr∂ys Kn (x, y), Kn (x, y) denoting the n-th

polynomial kernel associated to {Pn}n≥0.

Definition 4. A LPO K fixes or hold fixed the space Pk if K(p) = p for all p ∈ Pk.
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3 Integral formula for the Fourier coefficients.

Lemma 5. i)
∫ 1

−1
Qn(x)dx = 0, n ≥ 1.

ii) MQ′
n(1) = −

∫ 1

−1
xQn(x)dx, n ≥ 2.

iii) −
∫ x

−1
Qn(t)dt = (1− x2) qn−1 (x) , n ≥ 1,

with qn−1 ∈ Pn−1, deg(qn−1) = n− 1 and lc(qn−1) > 0.

iv) MQ′
n(1) = −

∫ 1

−1
qn−1 (x) (1− x2) dx, n ≥ 2.

Proof. i) and ii) From the orthogonality of {Qn}n≥0,

0 = 〈1, Qn〉S =

∫ 1

−1

Qn(x)dx, n ≥ 1,

0 = 〈x, Qn〉S =

∫ 1

−1

xQn(x)dx + MQ′
n (1) , n ≥ 2.

iii) Trivially
∫ x

−1
Qn(t)dt ∈ Pn+1 and

∫ 1

−1
Qn(t)dt =

∫ −1

−1
Qn(t)dt = 0.

iv) Integrating by parts in ii), taking into account iii),

MQ′
n(1) = −

∫ 1

−1

xQn(x)dx = −
[
x

∫ x

−1

Qn(t)dt|1−1 −
∫ 1

−1

(∫ x

−1

Qn(t)dt

)
dx

]
= −

∫ 1

−1

qn−1 (x)
(
1− x2

)
dx.

We will use this polynomial qn−1 for the sequel.

Lemma 6. For n ≥ 2 the n-th Fourier coefficient of a function f ∈ C1 [−1, 1] can be

expressed as

〈f, Qn〉S =

∫ 1

−1

[f ′ (x)− f ′ (1)] qn−1 (x)
(
1− x2

)
dx.

Proof. It follows from Lemma 5 integrating by parts.

4 On the zeros of qn−1 (x)

Lemma 7. For n ≥ 2 and for any polynomial p ∈ Pn−2∫ 1

−1

p (x) qn−1 (x)
(
1− x2

)
dx = −M p (1) Q′

n (1)

432



Proof. Define P (x) :=
∫ x

−1
p (t) dt. From Lemma 6

0 = 〈P, Qn〉S =

∫ 1

−1

(p (x)− p (1)) qn−1 (x)
(
1− x2

)
dx

and, consequently, we can deduce from Lemma 5, iv)∫ 1

−1

p (x) qn−1 (x)
(
1− x2

)
dx = p (1)

∫ 1

−1

qn−1 (x)
(
1− x2

)
dx = −p (1) M Q′

n(1).

Corollary 8. For each n ≥ 3, qn−1 (x) is orthogonal with respect to the inner product of

Jacobi with weight (1− x2) to any polynomial in Pn−2 with a zero at x = 1.

The following result shows a consequence of the aforementioned property.

Proposition 9. For n ≥ 2, the zeros of qn−1 (x), y1, . . . , yn−1 say, are real, simple and at

least n− 2 of them, y1, . . . , yn−2 say, are on (−1, 1) and yn−1 ∈ (−1, +∞).

Proof. Let y1, . . . , yk denote the different zeros of qn−1 (x) of odd multiplicity which are

in (−1, 1). Define r (x) = (x− y1) . . . (x− yk) , then the polynomial qn−1 (x) r (x) (x− 1)

does not change its sign in the interval (−1, 1). Hence∫ 1

−1

qn−1 (x) r (x) (x− 1)
(
1− x2

)
dx 6= 0.

From the previous corollary it follows that deg(r) = k ≥ n−2. This implies that all the ze-

ros of qn−1 (x) are real, simple and at the most one of these lies outside the interval (−1, 1).

Hence, qn−1 (x) = an−1 (x− y1) (x− y2) · · · (x− yn−1) , with y1, . . . , yn−2 ∈ (−1, 1) and

an−1 > 0.

On the other hand, by Lemma 7 and (5), one has that∫ 1

−1

qn−1 (x) (x− y1) . . . (x− yn−2)
(
1− x2

)
dx = −

n−2∏
i=1

(1− yi) MQ′
n(1) < 0,

and consequently∫ 1

−1

an−1 (x− y1)
2 . . . (x− yn−2)

2 (x− yn−1)
(
1− x2

)
dx < 0,

so x− yn−1 takes negative values. In particular −1− yn < 0.

5 The main result

Lemma 10. For i ≥ 2 and j > i, there exist constants Aij > 0 such that
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a) the polynomials qi−1 (x)±Aijqj−1 (x) have exactly i− 1 simple roots and a last sign

positive in (−1, 1) or have exactly i − 2 simple roots and a last sign negative in

(−1, 1).

b) Q′
i (1)± AijQ

′
j (1) ≥ 0.

Proof. a) It follows from proposition 9 and the fact that the roots of a polynomial are

continuous with respect to their coefficients. See [1].

b) From (5), Q′
j (1) > 0 so Aij in a) can be chosen in such a way that Q′

i (1) >

AijQ
′
j (1).

Corollary 11. For i ≥ 2 and j > i, there exist exactly (xjk)
i−1
k=1 and (yjk)

i−1
k=1 points in

(−1, 1] such that

(qi−1 (x) + Aijqj−1 (x))
i−1∏
k=1

(x− xjk) ≥ 0, and (qi−1 (x)− Aijqj−1 (x))
i−1∏
k=1

(x− yjk) ≥ 0.

Lemma 12. Let us suppose that for a polynomial q(x) there exists a set of points (yj)
k
j=1

in I = [a, b] such that q(x)
k∏

j=1

(x− yj) ≥ 0 for all x ∈ I. Then for each k-convex function

f ∈ Ck[a, b] it is verified that (f−p)(x)q(x) ≥ 0 for all x ∈ I, where p(x) is the polynomial

of Pk−1 which interpolates f at the points yj.

Proof. It suffices to consider the expression of the error given by

f(x)− p(x) =
Dkf(α(x))

k!
(x− y1)(x− y2) · · · (x− yk) con α(x) ∈ I.

Thus (f(x)− p(x))q(x) ≥ 0 for all x ∈ I.

Theorem 13. For each i ≥ 1 and j > i, there exist constants Aij > 0 such that for all

i-convex function f

〈f, Qi〉S ≥ Aij

∣∣〈f, Qj〉S
∣∣ .

Proof. For i ≥ 2 we consider Aij of Lemma 10. In this way we can write

〈f, Qi − AijQij〉S =

∫ 1

−1

(f ′ (x)− f ′ (1)) (qi−1 (x)− Aijqj−1 (x))
(
1− x2

)
dx =∫ 1

−1

(f ′ (x)− f ′ (1)− p (x)) (qi−1 (x)− Aijqj−1 (x))
(
1− x2

)
dx+∫ 1

−1

p (x) (qi−1 (x)− Aijqj−1 (x))
(
1− x2

)
dx,

where p (x) ∈ Pi−2 interpolates the function f ′ (x)− f ′ (1) at the points {y1, y2, . . . , yi−1}
given in Corollary 11. As f ′ (x)− f ′ (1) is (i− 1)-convex, by Lemma 12∫ 1

−1

(f ′ (x)− f ′ (1)− p (x)) (qi−1 (x)− Aijqj−1 (x))
(
1− x2

)
dx ≥ 0.
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On the other hand, for all x ∈ [−1, 1], f ′ (x)− f ′ (1)− p (x) = Dif(ξx)
i!

∏i−1
k=1 (x− yk) with

ξx ∈ (−1, 1) . Hence −p (1) = Dif(ξ1)
i!

(1− y1) · · · (1− yi−1) ≥ 0 and from Lemma 10 and

Lemma 7 we deduce that∫ 1

−1

p (x) (qi−1 (x)− Aijqj−1 (x))
(
1− x2

)
dx = −p (1) M

(
Q′

i (1)− AijQ
′
j (1)

)
is greater than or equal to zero.

Finally, it holds 〈f, Qi − AijQij〉S ≥ 0.

If i = 1, Q1 = P1 has a root in (−1, 1) and proceeding as in Lemma 10 there exist

constants A1j > 0 such that, on one hand, the polynomials Q1 − A1jQj have exactly one

simple root and a last sign positive in (−1, 1), and on the other hand Q′
1 (1)−A1jQ

′
j (1) ≥

0. Let f ∈ C1 [−1, 1] be an increasing function.

〈f, Q1 − A1jQj〉S =

∫ 1

−1

f (x) (Q1(x)− A1jQj (x)) dx + M f ′ (1)
(
Q′

1 (1)− A1jQ
′
j (1)

)
.

If p ∈ P0 interpolates f at the zero of Q1(x)− A1jQj (x) in (−1, 1) , then by Lemma 12∫ 1

−1

f (x) (Q1(x)− A1jQj (x)) dx =

∫ 1

−1

(f (x)− p (x)) (Q1(x)− A1jQj (x)) dx ≥ 0,

since, by the orthogonality of {Qn}n≥0,
∫ 1

−1
p (x) Qn (x) dx = 0, n ≥ 1 and from

M f ′ (1)
(
Q′

1 (1)− A1jQ
′
j (1)

)
≥ 0, it holds 〈f, Qi − AijQij〉S ≥ 0.

Analogously one can prove that 〈f, Qi + AijQij〉S ≥ 0.

Corollary 14. For n ≥ 0, if f ∈ C1 [−1, 1] is n-convex, then 〈f, Qn〉S ≥ 0.

For c = −1 and for any value of M in (4) the same properties are obtained analogously.

Finally, the result stated in the previous theorem is used by F. J. Muñoz and V.

Ramı́rez in [5] as a sufficient condition to prove the existence of conservative operators

associated to a given inner product.

Theorem 15. (F. J. Muñoz and V. Ramı́rez [5] ) Let F be certain space of real functions

defined on a bounded interval I = [a, b] equipped with an inner product 〈·, ·〉 and satisfying

also that Pn ⊂ F . Let {Qi}n
i=0 the polynomial orthogonal system with respect to 〈·, ·〉, with

gr(Qi) = i and positive leader coefficient. Let us suppose that given m ∈ {0, 1, . . . , n},
there exist Ai,j > 0 such that 〈f, Qi〉 ≥ Aij |〈f, Qj〉| for all i-convex function f , with

i = m, . . . , n− 1 and j > i and such that 〈f, Qn〉 ≥ 0 provided f is n-convex. Then there

exist values λi > 0 with 1 = λ0 = . . . = λm ≥ λm+1 ≥ . . . ≥ λn > 0 such that the operator

Kn,m (f) =
∑n

i=0 λi 〈f, Qi〉Qi preserves the i-convexities for i = m, . . . , n and holds fixed

Pm.

Remark 16. Theorem 13 states that the set of possible values for the constant m of Theo-

rem 15 is {1, . . . , n}, and consequently we cannot guarantee the preservation of positivity,

as it is shown in the following example.
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Example 17. Let 〈f, g〉S =
∫ 1

−1
f (x)g(x)dx + f ′(1)g′(1). Let Q0 (x) = 1√

2
and Q1 (x) =√

3
5
x be the first two orthogonal polynomials. Let us see that there exist no constant B > 0

such that the operator K (f) = 〈f, Q0〉S Q0 +B 〈f, Q1〉S Q1 preserves positivity. Indeed, it

suffices to define f (x) := x2n, with n ≥ 1, and check that K (f) (−1) = 1
2n+1

− B 6
5
n < 0,

for n := n(B) sufficiently large.
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