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Conservative polynomial operators and discrete Sobolev-type

products'

A. Molina-Tébar and F.-J. Munoz-Delgado

Abstract

In this work we study the existence of linear shape preserving polynomial opera-
tors of the form K (f) =Y ;" (X (f,Qi)g Qi, where Q; are orthogonal polynomials
with respect to the inner product (f,g)g = f_ll f(z)g(x)dx + M f'(c)g'(c) with
M >0 and c € [-1,1].

We show some difficulties that appear when ¢ € (—1,1) and prove that for
¢ = =+1 and for any k € {1,...,n} there exist values A; such that K|p, = 1|p, and
K preserves the j-convexity for j € {k,...,n}.
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1 Introduction

The polynomial approximation using inner products is not used to preserve the shape
properties of the functions. Nevertheless, there exist shape preserving polynomial ope-
rators whose proper functions are orthogonal polynomials with respect to certain inner

product. These operators can be written in the form

Z)\ B,R (1)

where P; are orthogonal polynomials with respect to the inner product (-, -) and \; > 0 are
the associated proper values. As an example, if we consider the Legendre inner product
and the Jacobi one, then we obtain respectively the operators of Bernstein-Durrmeyer-
Derriennic and the ones of Bernstein-Jacobi.

Let C*(I) be the set of all real valued functions defined on I = [—1, 1] with continuous
i-th derivative. We denote by D’ the i-th differential operator, and by deg(p) and lc(p)
the degree and the leader coefficient of the polynomial p = p (x) respectively.

"This work is partially supported by Junta de Andalucfa, FQM-0178, and Ministerio de Ciencia y
Tecnologia, BEM 2000-911.
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A function f € C¥(I) is said to be i-conver if D'f(x) > 0 for all z € I. A linear
polynomial operator (LPO) K preserves i-convezity if it maps i-convex functions onto
i-convex polynomials.

In [5] it is shown that, with the use of classical inner products, for any n = 0,1,...,
and any 7 = 0,1,...,n, there exist \; > 0 such that K, preserves the i-convexities for
1=7,...,n and it is the restriction of the identity operator to the spaces of polynomials
of degree less than or equal to j, that we denote by P;.

As the Sobolev-type inner products consider the values of the function and its deriva-
tives, then one could find them appropriate to preserve the sign of the derivatives (see
3, 4]).

In this work we consider inner products of the form

()5 = [ 1 @gl)ds+ Mg ) )
where M > 0 and ¢ € [—1, 1], and we prove that:

1) when ¢ = 1, —1 one obtains results similar to the ones obtained with other Sobolev-

type inner products.

2) for certain values of ¢ € (—1,1) it is not possible to find operators that preserve

2-convexity and/or 3-convexity.

Moreover, we show examples with certain values of ¢ € (—1,1) in which the best
approximation of a convex function by polynomials of Py is a concave one. Analogously
with 3-convex functions in Ps.

On the other hand, if in (1) the leader coefficient of P, is positive and f is n-convex,
then the inequality (f, P,) > 0 is a necessary and sufficient condition for K,(f) to be

n-convex.

Example 1. Let I = [-1,1], let W(I) = {f € C(I): 3f'(3)} endowed with the inner
product

(f.9)s = / F @t + £ (3)

and let Qo, Q1, Q2 be the first three orthogonal polynomials with respect to (3) and with

positive leader coefficient. An operator of the type Ko(f) = Ao (f, Qo) g Qo+A1 (f, Q1) g Q1+
Ao (f, Q2) g Qa2 with N; € RY cannot preserve the 2-convexity. Indeed, it suffices to consider

f(x)={( VIR ATt

if — <
x—§)4 if %Sxﬁl.

the function

We can find analogous results whenever for fixed values of ¢ € (—1,1) and M in (2)
there exists n such that @, (1) <0.
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Example 2. Ifc € (=1,1) and Q, (1) <0 we define the function

B 0 if —1<ax<r
f()_{( )n+2

r—r if r<z<l1

where r = max {c, v}, v denoting the greatest root of Q,(z) in (—1,1). Clearly, D"f (z) >
0 forallz € [-1,1], f'(¢) =0 and Q,(z)f(x) <0 for all x € (r,1]. Hence, (f,Qn)g < 0.

Example 3. Let W(I) = {f € C(I): 3f'(2)} endowed with the inner product (2) with
c= % and M = % Let Qg, Q1, Q2 and Q3 be the first four orthogonal polynomials with
positive leader coefficient. The operator K3 defined by Ks (f) = Z?:o i (f, Q) Q; with
Ai € RY preserves the 2-convezity whenever (K3(f))" = Xa (f, Q2)g Q4+ X3 (f, Qs)g Q4 >

0 for all 2-convez function f. If we take

B 0 if —1<

ro={ ity

one can check easily that (f,Q2)g and (f,Qs)g are negative, and Q5(1) > 0, Q5(1) > 0.
Hence (K3(f))" (1) = Ao (f, Q2)s Q5(1) + A3 (f, Q)5 Q5(1) < 0.

Finally, in what follows, we prove that when ¢ = 1 or ¢ = —1, if we take any M > 0
in (2), then the existence of conservative operators of the type (1), associated to the

corresponding system of orthogonal polynomials, is guaranteed.

2 Preliminaries.

Let us consider the space C"[—1, 1] equipped with the inner product

(f.9)s = / F{)gla)da + MF (1) (1) (4)

with M > 0.

Let {P.},5 and {Qn},5, be the systems of monic orthogonal polynomials (SMOP)
with respect to the inner products of Legendre and the one given in (4) respectively. For
the sake of clarity we have written {Q,},,, instead of {Q%M)}

Clearly, it holds that for k = 0,1, Qx = F.

In [2] we can find that

n>0

P (1
Q)= — o 5)
1+ MK~/ (1,1)
for each n > 2, where K" (x,y) represents %Kn (x,y), K, (x,y) denoting the n-th

polynomial kernel associated to { P},

Definition 4. A LPO K fizes or hold fized the space Py if K(p) = p for all p € Py.

431



3 Integral formula for the Fourier coefficients.
Lemma 5. i) f_ll Qn(z)dx =0, n>1.
i) M@, (1 —f rQn (v n2=2.

ii) — [T, Qn(t)dt = (1 —2%) gyy (x), n>1,
with ¢n—1 € Pp_1, deg(¢n—1) =n —1 and le(g¢,—1) > 0.

iv) M@ (1 —f Gn1 () (1 —2%)dx, n>2.

Proof. i) and ii) From the orthogonality of {Q, }

n>0’

1
0= (1,0 = /_1 On(x)dz, n>1,

1
0= (z,Qn)g = / rQy(z)dr + MQ, (1), n > 2.

iii) Trivially f Qn(t)dt € P41 and f Qn(t) f Qn(t)dt =
iv) Integrating by parts in ii), taking into account iii),

w0 = [ saiom=|e [, ([ o)

_ /_ 11%_1 (o) (1 - o) da.

We will use this polynomial ¢,_; for the sequel.

Lemma 6. For n > 2 the n-th Fourier coefficient of a function f € C'[—1,1] can be

expressed as

FQds = [ U@ = 0] s (@) (1= %)

1

Proof. Tt follows from Lemma 5 integrating by parts. O]

4 On the zeros of ¢, 1 ()

Lemma 7. Forn > 2 and for any polynomial p € P,,_»

/_ p(2) guos (2) (1 — 2%) dz = —Mp(1) @, (1)

1
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Proof. Define P (z) := [, p(t)dt. From Lemma 6
1
0= (PQuls= [ (06 =p(V) arr (@) (122 da
-1
and, consequently, we can deduce from Lemma 5, iv)

/_ p(x) qn1 () (1 — 1:2) dv =p (1)/_ Gn1 () (1 — :c2) der=—-p(1)M Q. (1).

1 1

]

Corollary 8. For each n > 3, q,_1(x) is orthogonal with respect to the inner product of

Jacobi with weight (1 — %) to any polynomial in P,_5 with a zero at v = 1.
The following result shows a consequence of the aforementioned property.

Proposition 9. Forn > 2, the zeros of gn—1 (), y1,...,Yn_1 Say, are real, simple and at

least n — 2 of them, y1, ..., Yn_2 say, are on (—1,1) and y,_1 € (—1,+00).

Proof. Let y1,. ..,y denote the different zeros of ¢,_; (z) of odd multiplicity which are
in (—1,1). Define r (z) = (x —y1) ... (z — yx), then the polynomial ¢, (z)r (z) (z — 1)
does not change its sign in the interval (—1,1). Hence

/_ Gn—1 ()7 (z) (z — 1) (1 — 2%) dz # 0.

1

From the previous corollary it follows that deg(r) = k > n—2. This implies that all the ze-
ros of g,_1 () are real, simple and at the most one of these lies outside the interval (—1,1).
Hence, ¢,1(z) = an1 (x —y1) (x —42) -+ (T = Yn—1), With y1,...,yn2 € (=1,1) and
an—1 > 0.

On the other hand, by Lemma 7 and (5), one has that

/_ Gt () (@ —11) o (T — Ypoo) (1 — 2%) do = — 1:[ (1—y) M@, (1) <0,

1 i=1

and consequently

/ oy (T —11)° (T = Yn2)® (T — Yn_1) (1—2%)dz <0,

1

S0 x* — Y1 takes negative values. In particular —1 — y,, < 0. O

5 The main result

Lemma 10. Fori > 2 and j > i, there exist constants A;; > 0 such that
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a) the polynomials q;—1 (v) £ Ai;q;—1 (x) have exactly i — 1 simple roots and a last sign
positive in (—1,1) or have exactly i — 2 simple roots and a last sign negative in
(_17 1) :

b) Qi (1) £ AyQ; (1) > 0.

Proof. a) It follows from proposition 9 and the fact that the roots of a polynomial are
continuous with respect to their coefficients. See [1].

b) From (5), @ (1) > 0 so A in a) can be chosen in such a way that Q; (1) >
A Q% (1). O

Corollary 11. For i > 2 and j > i, there exist exactly (xjk)z;ll and (yjk)z;ll points in
(—1,1] such that

(gi-1 () + Aijgj—1 () 1:[(55 — k) 2 0, and (gi—1 (x) — Aijgj-1 (2)) ﬁ(f = yjr) = 0.

Lemma 12. Let us suppose that for a polynomial q(x) there exists a set of points (yj)f:1

k

in I = [a,b] such that q(x) [[(x —y;) > 0 for all x € I. Then for each k-convez function
j=1

f € C*[a,b] it is verified that (f —p)(x)q(x) > 0 for all x € I, where p(x) is the polynomial

of Pr_1 which interpolates f at the points y;.

Proof. Tt suffices to consider the expression of the error given by

@) = ple) = 2L (0o — ) (@ = ) con o) € 1.
Thus (f(z) — p(x))g(x) >0 for all z € I. O

Theorem 13. For each i > 1 and j > i, there exist constants A;; > 0 such that for all

i-conver function f
<f7 QZ>S Z Aij }<fa Qj)sl .

Proof. For i > 2 we consider A;; of Lemma 10. In this way we can write

1

(f, Qi — AijQij) g = /_ (f" (@) = £ (1) (g1 (2) = Aijgj-1 (2)) (1 — 2*) do =

1

/ (f' (@)= ' (1) = p(x)) (gi-1 (2) — Agjgj—1 () (1 — 2°) da+

1

| @) a1 @) = Ay @) (1 - ) i,

1
where p (z) € P;_, interpolates the function f’(x) — f’ (1) at the points {y1,y2,...,¥i—1}
given in Corollary 11. As f'(x) — f'(1) is (i — 1)-convex, by Lemma 12

/ (f' () — f' (1) = p(2)) (gi-1 (x) — Aijgj—1 () (1 — 2?) dz > 0.

1
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On the other hand, for all z € [-1,1], f'(z) — f' (1) —p(z) = %,(éz) ! (@ — yg) with
& € (—1,1) . Hence —p(1) = %,(51) (1—91)---(1 —y;—1) > 0 and from Lemma 10 and
Lemma 7 we deduce that
1
[ @) 1 ) = A (@) (1= %) do = =p (1) M (@1 (1) = A5} (1)
is greater than or equal to zero.

Finally, it holds (f, Q; — A;;Qij) ¢ > 0.

If i =1, @1 = P, has a root in (—1,1) and proceeding as in Lemma 10 there exist
constants A;; > 0 such that, on one hand, the polynomials (); — A;;Q); have exactly one
simple root and a last sign positive in (=1, 1), and on the other hand Q' (1) — A4,;Q’ (1) >
0. Let f € C*[—1,1] be an increasing function.

(f,Q1— AyQj)g = /1 (@) (@Qi(x) — AyQ; (z)) dz + M (1) (Q (1) — A Q5 (1)) -

If p € Py interpolates f at the zero of Q1(x) — A1;Q; (x) in (—1,1), then by Lemma 12

1

| 7@ @) = 4,0 @) de = [ (@) =) (@) = A1Q; () do 2 0

~1
since, by the orthogonality of {Qn},,5, f_llp () Qn (x)dz =0, n > 1 and from

Analogously one can prove that (f,Q; + A;;Q;;)g > 0. ]

Corollary 14. Forn >0, if f € C* [=1,1] is n-convez, then (f,Qn)s > 0.

For ¢ = —1 and for any value of M in (4) the same properties are obtained analogously.
Finally, the result stated in the previous theorem is used by F. J. Munoz and V.
Ramirez in [5] as a sufficient condition to prove the existence of conservative operators

associated to a given inner product.

Theorem 15. (F. J. Munoz and V. Ramirez [5] ) Let F be certain space of real functions
defined on a bounded interval I = [a,b] equipped with an inner product (-,-) and satisfying
also that P, C F'. Let {Q;};_, the polynomial orthogonal system with respect to (-,-), with
gr(Q;) = i and positive leader coefficient. Let us suppose that given m € {0,1,... ,n},
there exist A, ; > 0 such that (f,Q:) > Ai; |(f.Q;)| for all i-convex function f, with
i=m,...,n—1and j > i and such that (f,Q,) > 0 provided f is n-convex. Then there
exist values \; >0 with 1 =X g = ... = Ay 2> Ag1 = .. > A\ > 0 such that the operator
Kom (f) =20 N (f, Qi) Qi preserves the i-convegities for i =m,...,n and holds fized
P,,.

Remark 16. Theorem 13 states that the set of possible values for the constant m of Theo-
rem 15 is{1,...,n}, and consequently we cannot guarantee the preservation of positivity,

as it is shown in the following example.
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Example 17. Let (f,9)q f f(x)g(z)dr + f'(1)g'(1). Let Qo (z) = \/Li and Qy (v) =
\/;a: be the first two orthogonal polynomzals. Let us see that there exist no constant B > 0
such that the operator K (f) = (f, Qo) g Qo+ B (f, Q1)g Q1 preserves posz’tim’ty Indeed, it
suffices to define f (x) := x®", with n > 1, and check that K (f) (1) = — Bﬁn <0,
for n :=n(B) sufficiently large.

2n+1
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