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Abstract

In this paper, we elucidate how abstract concentration compactness established in

[7], can be used in solving variational systems, by giving an application to a problem

treated in [6] by concentration compactness of P. L. Lions.
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1 Introduction and main result

Via an abstract concentration compactness approach, we prove the existence of a weak

solution of the problem:

(P ) :



−∆u = q|v|q−2v in RN

−∆v = p|u|p−2u in RN

lim
|x|−→∞

u(x) = 0

lim
|x|−→∞

v(x) = 0

where N ≥ 3, and p, q are two real numbers satisfying
1

p
+

1

q
=

N − 2

N
=

2

2∗
.

P.L.Lions has proved in [6], that the corresponding scalar equation −∆((−∆u)1/q) = up,

has radial ground states for all values of p and q, on the critical hyperbola.

In [3], authors have proved uniqueness of solution and its asymptotic behavior.

In this paper, we prove again, the existence result, by combining linking and abstract

concentration compactness method.

Note that if p = q, then p = q = 2∗, v = u, and
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(p) ⇐⇒


−∆u = 2∗|u|2∗−1 in RN

lim
|x|→∞

u(x) = 0

A weak solution of the problem (P ), is a critical point of the functional J , defined by:

J(u, v) :=

∫
RN

∇u.∇vdx−
∫

RN

[|u|p + |v|q] dx

We note by H, the Banach space H1(RN)×H1(RN) equipped with the norm

‖(u, v)‖H = ‖u‖H1(RN ) + ‖v‖H1(RN ).

Theorem 1.1 (P ) has a weak solution in H, for all positive real numbers p and q, sat-

isfying
1

p
+

1

q
=

N − 2

N
=

2

2∗
.

2 Minimax theorem and Plais-Smale sequence

In this section, we establish the linking geometry of J , to give a Palais-Smale sequence

by the minimax principle used in [9] and [1].

Definition 2.1 Let S be a closed subset of a Banach space X, and Q a submanifold of

X with relative boundary ∂Q.

We say that S and ∂Q link if:

1. S ∩ ∂Q = ∅.

2. ∀h ∈ C0(X, X) such that h|∂Q
= id, there holds h(Q) ∩ S 6= ∅.

Theorem 2.2 Let J : X −→ R be a C1 functional. Consider a closed subset S ⊂ X,

and a submanifold Q ⊂ X with relative boundary ∂Q. Suppose:

1. S and ∂Q link.

2. ∃δ > 0 such that

J(z) ≥ δ ∀z ∈ S,

J(z) ≤ 0 ∀z ∈ ∂Q.

Let

Γ := {h ∈ C0(X, X) / h|∂Q
= id},

and

c := inf
h∈Γ

sup
z∈Q

J(h(z)) ≥ δ.
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Then there exists a sequence (zk)k∈N ⊂ X, such that

J(zk) −−−→
k→∞

c,

J ′(zk) −−−→
k→∞

0.

We choose numbers µ > 1, ν > 1, such that
1

p
<

µ

µ + ν
, and

1

q
<

ν

µ + ν
.

The following propositions give the linking geometry of J . Its proofs are similar to those

in [1], and will be omitted.

Proposition 2.3 There exist ρ > 0, δ > 0, such that if we define

S := {(ρµ−1u, ρν−1u)/‖(u, u)‖ = ρ, u ∈ D(∇)}

then J(z) ≥ δ ∀z ∈ S.

Proposition 2.4 There exist σ > 0, M > 0, such that if we define

Q = {τ(σµ−1u, σν−1u) + (σµ−1v,−σν−1v) /0 ≤ τ ≤ σ, 0 ≤ ‖(v,−v)‖H≤ M,

and u, v ∈ D(∇)},
then J(z) ≤ 0 ∀z ∈ ∂Q, where ∂Q is the boundary of Q relative to the subspace

{τ(σµ−1u, σν−1u) + (σµ−1v,−σν−1v)/ τ ∈ R, v ∈ D(∇)}

3 Abstract concentration compactness

In this section, we recall the abstract concentration compactness due to I.Schindler,

and K.Tintarev [7], and we give a version adapted to our problem.

Let E be a separable reflexive Banach space, and let G be an infinite multiplicative group

of bounded linear operator on E .

Let u, uk ∈ E . We say that uk converges to u weakly with concentration, and we note

uk
cw−→ u, if ∀φ ∈ E∗

lim
k→∞

sup
g∈G

(g(uk − u), φ) = 0.

If G is a compact group, concentrated weak convergence is equivalent to weak convergence.

Definition 3.1 Let {φk} be a normalized basis for E∗. Then we define the norm

‖u‖G := sup
g∈G

(
∞∑

k=1

|(gu, φk)|2

2k

) 1
2

.

We suppose that G satisfies:

P1) sup
g∈G

‖g‖ < ∞, where ‖g‖ := sup
‖u‖=1

‖gu‖.
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P2) If (gk)k∈N ⊂ G, and for all u ∈ E gku −−−→
k→∞

g0u, then g0 ∈ G.

P3) If gku ⇀ w 6= 0 for a u ∈ E , then gk has a strongly convergent subsequence.

P4) Let (uk)k∈N ⊂ E be a bounded sequence, and let {w(n)} ⊂ E and {g(n)
k } ⊂ G,

k, n ∈ N, be such that the sequence

(g
(n)
k g

(m)−1

k )k∈N dissipates for m 6= n

and

g
(n)
k uk ⇀ w(n), n ∈ N,

then ‖w(n)‖G −−−→
n→∞

0.

Theorem 3.2 Let (uk)k∈N ⊂ E be a bounded sequence. Then there exist (w(n))n∈N ⊂ E,

(g
(n)
k )n∈N ⊂ G, k ∈ N, such that for a renamed subsequence,

g
(n)−1

k g
(m)
k ⇀ 0 for n 6= m,

uk −
∑
n∈N

g
(n)
k w(n) cw−→ 0.

3.1 Concretisation of the abstract concentration compactness

on H := H1(RN)×H1(RN)

Let G be the infinite multiplicative group of bounded linear operators

defined on H by

gt,α(u, v) =

(
t−

N
p u

(
. + α

t

)
, t−

N
q v

(
. + α

t

))
=

(
g1

t,αu, g2
t,αv
)

where t ∈ R and α ∈ RN .

G satisfies the properties P1)-P4). See [7] for a proof.

We have the invariance J(gt,α(u, v)) = J(u, v).

The following theorem is a corollary of the Theorem 1.7 of [7].

Theorem 3.3 Let (zk = (uk, vk))k be a bounded sequence in H. Then there exist

w(1), w(2), . . . ∈ H, and (α
(1)
k , t

(1)
k ), (α

(2)
k , t

(2)
k ), . . . ∈ RN × R+

∗ , such that for r 6= m, either

t
(r)
k /t

(m)
k → ∞, or t

(r)
k /t

(m)
k → 0, or |α(r)

k − α
(m)
k | → ∞; and ∀r : t

(r)
k → ∞, or t

(r)
k → 0;

where

w(n) = w − lim
k→∞

g 1

t
(n)
k

,−α
(n)
k

zk

The series
∑

n

g
t
(n)
k ,α

(n)
k

w(n) converges absolutely in H, and on a renamed subsequence:

zk −
∑

n

g
t
(n)
k ,α

(n)
k

w(n) cw−→ 0.
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Lemma 3.4 Let (zk)k be a bounded sequence in H such that zk
cw−→ 0.

Then modulo a subsequence, lim
k→+∞

‖zk‖Lp(RN )×Lq(RN ) = 0, for all positive real numbers

p and q, satisfying
1

p
+

1

q
=

N − 2

N
=

2

2∗

Proof of Lemma 3.4: Let zk := (uk, vk) ∈ H.
1

p
+

1

q
=

2

2∗
=⇒ (

N

N − 2
< p ≤ 2∗ and q ≥ 2∗) or (p ≥ 2∗ and

N

N − 2
< q ≤ 2∗).

Suppose that N
N−2

< p < 2∗ and q ≥ 2∗.

Note that zk
cw−−−−→

k→+∞
0 =⇒ ∀g ∈ G : gzk ⇀ 0.

Let g = gtk,0, where tk −−−−→
k→+∞

+∞ is chosen such that

∫
|vk|>t

N
q

k

|vk|q −−−−→
k→+∞

0;

and let wk = g2
tk,0vk = t

−N
q

k vk(
.

tk
), i.e vk(x) = t

N
q

k wk(tkx).

∫
|vk|<t

N
q

k

|vk|qdx =

∫
|wk|<1

|wk|qdx

≤
∫

RN

|wk(x)|2dx

= t
−N(2+q)

q

k

∫
RN

|vk(x)|2dx −−−→
k→∞

0.

Hence ‖vk‖Lq(RN ) −−−→
k→∞

0.

Let now {B(y, 1), y ∈ Z ⊂ RN} be a cover of RN , and g = g1,−y.

By Rellich-Kondrachov inequality, we obtain:

‖uk‖p
Lp(B(y,1)) ≤ C‖uk‖2

H1
0 (B(y,1))‖uk‖p−2

Lp(B(y,1)) (3.1)

By summing inequalities (3.1) over y ∈ Z, we obtain:

‖uk‖p
Lp(RN )

≤ C‖uk‖2
H1(RN ) sup

y∈Z
‖g1

1,−yuk‖p−2
Lp(B(0,1)).

By the compactness of the imbedding of H1
0 (B(0, 1)) into Lp(B(0, 1)), it follows that

modulo a subsequence, g1
1,−yuk −−−→

k→∞
0 in Lp(B(0, 1)).

Hence, ‖uk‖LP (RN ) −−−→
k→∞

0.

2
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4 Proof of the main result

Lemma 4.1 Let (zk = (uk, vk))k∈N be a sequence of H such that

J(zk) −−−→
k→∞

c and J ′(zk) −−−→
k→∞

0. (4.1)

Then (zk)k∈N is bounded.

The proof is similar to that of Proposition 2.1 in [1].

Proof of Theorem 1.1. Let (zk) be a sequence satisfying (4.1).

According to Theorem 3.3, there exist w(1), w(2), · · · ∈ H, and (α
(1)
k , t

(1)
k ),

(α
(2)
k , t

(2)
k ), · · · ∈ RN × R+

∗ , such that

zk −
∑

n

g
(n)
k w(n) cw−→ 0,

where g
(n)
k = g

t
(n)
k ,α

(n)
k

.

(zk) does not converge weakly with concentration to 0. In fact, if we suppose that zk
cw−→ 0

we will have by Lemma 3.4 lim
k→∞

‖zk‖Lp(RN )×Lq(RN ) = 0 (modulo a subsequence), which

shows that J(zk) −→ 0. Contradiction. Then there exists a w(n0) 6= 0.

On the other hand, for some gk ∈ G, we have

gkzk ⇀ w(n0).

Then

J ′(gkzk) ⇀ J ′(w(n0))

However, J ′(zk) −−−→
k→∞

0 =⇒ J ′(gkzk) −−−→
k→∞

0. Then, J ′(w(n0)) = 0.
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