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Monograf́ıas del Semin. Matem. Garćıa de Galdeano. 27: 405–412, (2003).

Abstract

Shock models in system reliability are usually defined by the time between two

consecutive shocks, the damage caused by a shock, the system failure and the de-

pendence relationship among the above elements. The main purpose of this work

is to review and classify the large set of shock models defined and studied in the

literature in the last three decades. Furthermore, we introduce a new model which

generalizes some of the classical ones that arise when the system is governed by

independent and identically distributed pairs, {(An, Bn)}∞n=0, where An is the mag-

nitude of the nth shock and Bn is the time between the (n − 1)th and the nth

shock.
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1 Introduction

We consider systems subject to shocks that occur randomly in time. Shock models have

been studied by several authors and provide a realistic formulation for modelling certain

reliability systems situated in random environment. Various of the models collected here

are physically motivated. For instance, the extreme and cumulative shock models may

be appropriate descriptions for the fracture of brittle materials, such as glass, and for the

damage due to the earthquakes or volcanic activity, respectively.

The way in which the time between two consecutive shocks, the damage caused by

a shock, the system failure and the relationships among all these elements are modelled,

characterizes a shock model. In the literature, two major types are distinguished depend-

ing on whether the effect of the shock on the system is independent of its arrival time

or not. These principal models are collected in Section 2 and Section 3, respectively. In

Section 4, we introduce a new shock model which generalizes some of the classical ones.

Finally, we end with some remarks and conclusions.
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2 Classic shock models with independence assump-

tion

When independence between the shock effect and the arrival time is assumed, a sequence

of surviving probabilities {P̄k} is defined, being P̄k the probability that the system still

run after the kth shock. According to the time between consecutive shocks, these models

are divided into four kinds:

- homogeneous Poisson process, that is, the times between two consecutive shocks are

independent, identically distributed exponential random variables;

- non-homogeneous Poisson process, that is, a counting process null at the origin with

independent increments where the probability of a shock in (t+∆t] is λ(t)∆t+o(∆t),

while the probability of more than one shock in (t + ∆t] is o(∆t);

- non-stationary pure birth process, that is, a Markov process where, given that k

shocks have occurred in (0, t], the probability of a shock in (t, t + ∆t] is λkλ(t)∆t +

o(∆t), while the probability of more than one shock in (t, t + ∆t] is o(∆t);

- or renewal process, that is, the times between two consecutive shocks are independent

and identically distributed random variables.

In the simplest case, homogeneous Poisson process, conditions on the prefixed sequence

{P̄k} are obtained to guarantee distribution properties of the survival function H̄(t). For

more details, see Esary et al [6].

Some of these results are extended by A-Hameed and Proschan [1] in the case of the

non-homogeneous Poisson process and by A-Hameed and Proschan [2], Klefsjö [13] and

[14] in the case of the non-stationary pure birth process.

When the shocks occur according to a renewal sequence, Skoulakis [24] describes the

system failure in such a way that generalizes the previous ones. In this model, we assume

that the jth shock, independent of all else, has an intensity x randomly chosen from

a distribution Gj, which is supported in [0, 1] and that it may cause the failure with

probability x. This shock model also has the Ross’ model [20, p. 22], the R̊ade’s model

[18] and the Nakagawa’s model [17] as particular cases. In the renewal process case, the

interest is focussed on the reliability function for a component and on the extension to

multi-component systems.

We point out that, along these last years, several authors have incorporated elements

to turn the system more realistic. For instance, Finkelstein and Zarudnij [9] add the

concept of recovery to allow the system to eliminate the consequence of each shock in

the following way: a r.v. τ is defined for each shock, which models the recovery time
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from the shock. Then, if a shock occurs before the recovery time from the previous one

has elapsed, the system fails. For this particular model, Finkelstein and Zarudnij obtain

the reliability function for times between consecutive shocks following a non-homogeneous

Poisson process.

Ageing is another element that has been incorporated to some models. Fan et al

[7] include this ageing notion to a compound Poisson process shock, P (λ, x), that is, a

shock model where the shocks have random magnitudes x and arrive according to an

homogeneous Poisson process of rate λ. In the compound Poisson process, a shock is

fatal to the system with probability 1− exp(−x), where x is the shock’s magnitude. The

incorporation of ageing is carried out by means of a constant δ, the rate of ageing, in

such a way that the probability of failure due to a shock of magnitude x arriving at

time u is 1− exp(−δu− x). The reliability function is also obtained and an extension to

multi-component systems is provided.

3 Classic shock models with a dependence structure

When there exists dependence between the effect of the shock and its arrival time, the

damage caused by a shock is modelled in the Fan’s way, that is, by a random variable

representing the shock’s magnitude. Three principal models are considered: extreme

shock model, where the system breaks down as soon as the magnitude of an individual

shock exceeds some given level; cumulative shock model, where the system fails when

the cumulative shock magnitude exceeds some given level and run shock model, where

the system works until k consecutive shocks with critical magnitude occur. However,

Agrafiotis and Tsoukalas [3] define a shock model that is an extension of the cumulative

shock model: the system failure depends on the cumulative damage of those shocks with

a magnitude exceeding some pre-specified threshold.

The general setup in these three main shock models is a family {(An, Bn)}∞n=0 of i.i.d.

two-dimensional vectors where An represents the magnitude of the nth shock and Bn the

time between the (n − 1)st and the nth shock or, alternatively, the time between the

nth and the (n + 1)st shock, called model I and model II respectively. Model II differs

significantly from model I in that the magnitude An of the nth shock affects future events,

that is, the time interval Bn until the (n+1)st shock. Moreover, there exists a first shock

at time t = 0 in model II while A0 and B0 are assumed to be zero in the model I.

Let T be the time to the system failure and {N(t), t ≥ 0}, the counting process

generated by the renewal sequence {Bn}∞n=0. Then, for a fixed threshold z > 0, we have

that, in the extreme damage case, T ≤ t ⇔ max{An|0 ≤ n ≤ N(t)} > z; in the cumulative

damage case, T ≤ t ⇔
∑N(t)

n=0 An > z; in the run case, where z is the level which defines

a shock as critical, T ≤ t ⇔ min{n|An−j > z, j = 0, 1, . . . , k − 1} ≤ N(t).
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Under the model I and model II, the two first failure models were studied by Shanthiku-

mar and Sumita [22], [23], [25] and Gut [10] and [11], providing the reliability function,

two first moments and some results about the asymptotic behaviour of the system failure

time. In the case when the interarrival time Bn has infinite mean, Anderson, [4] and [5],

obtains asymptotic results for the model I.

Igaki et al [12] extend the extreme and cumulative shock model under the model

I incorporating the influence of the external system state after the nth shock, Jn, on

the correlation structure between the shock magnitudes and the shock interarrival times.

More concretely, a trivariate stochastic process {An, Bn, Jn}∞n=0 is defined satisfying the

following Markov property for all n ∈ {0, 1, 2, . . . } and j ∈ S = {1, 2, . . . , N}:

P{An+1 ≤ a, Bn+1 ≤ b, Jn+1 = j|A0, . . . , An, B0, . . . , Bn, J0, . . . , Jn}

= P{An+1 ≤ a, Bn+1 ≤ b, Jn+1 = j|Jn}

Also, temporally homogeneity is assumed so that the right hand side of the above

equation is independent of n. That is, the system state changes after each shock according

to a Markov process and the joint distribution of {An, Bn} is affected by transitions of

the system state.

The third failure model was recently introduced by Mallor and Omey [15] obtaining

properties of the distribution function of the system failure time and the limit behaviour

when k tends to infinity or when the probability of entering a critical set tends to zero.

All these models are summarized in the Table 1.

System failure

�
(An, Bn)

Extreme damage / Critical region
Cumulative damageP

Ai > z

k consecutive shocks

with (A, B) ∈ R

{(An, Bn)}∞n=0 i.i.d pairs

of correlated variables

Model I

D.F. of Tz [22]

Moments of Tz [22], [11]

Properties of Tz [23]

Asymptotic behaviour

•E[B] < ∞ [22], [11]

•E[B] = ∞ [4]

Random environment [12]

D.F. of Tz [25], [3]

Moments of Tz [25], [3]

Properties of Tz [25]

Asymp. behaviour

•E[B] < ∞ [25], [10], [3]

•E[B] = ∞ [5]

Random environment [12]

D.F. of Tz [15]

Moments [15]

Asymp. behaviour [15]

{(An, Bn)}∞n=0 i.i.d pairs

of correlated variables

Model II

D.F. of Tz [22]

Moments of Tz [22]

Properties of Tz [23]

Asymp. behaviour

•E[B] < ∞ [3]

D.F. of Tz [25]

Moments de Tz [25]

Properties of Tz [25]

Asymp. behaviour

•E[B] < ∞ [25], [10]

{(An, Bn)}∞n=0 independent

but not necessarily

identically distributed pairs

of correlated variables

Model I

Asymp. behaviour [11]

Table 1: Correlated effect and interarrival shock time
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4 Definition of a new general model

We consider a system subject to shocks. Let An denote the magnitude of the nth shock

and Bn the time between the (n− 1)st and the nth shock. Let R ⊆ R be a prefixed real

subset. We say that the nth shock is a critical shock if An ∈ R. Also, we say that k

consecutive shocks form a critical run of length k if all of them are critical and they are

not contained in any sequence of k + 1 consecutive critical shocks. We define a complete

run of length k + 1 as a critical run of length k immediately followed by a non critical

shock.

In order to model the damage caused by a shock, we introduce a new set of random

variables dj, j = 0, 1, . . . . The variable d0 represents the damage due to a non critical

shock and we assume it to be zero. For j ≥ 1, the variable dj represents the damage

caused by a shock when it occupies the jth place in a critical run. That is, the nth shock

causes a damage dj if

An−i ∈ R, for i = 0, 1, . . . , j − 1 and An−j /∈ R, for n ≥ j ≥ 1;

An /∈ R, for j = 0.

The system fails as soon as the accumulated damage due to the random variables dj ’s

exceeds a fixed threshold z > 0.

For our model we suppose that the defined random variables verify the following

stochastic assumptions:

a) {dj}∞j=0 is a family of nonnegative and independent but not necessarily identically

distributed random variables. We also assume that d0 = 0;

b) for each j ≥ 0, {(An, Bn, dj)}∞n=1 are nonnegative, independent random vectors, all

of them equally distributed as the random vector (A, B, dj);

c) we do not impose any condition of independence among the variables A, B and dj

for all j ≥ 0.

In brief, our model is governed by a sequence of random vectors of three correlated

variables which represent the magnitude of the shock, the intershock time and the damage

caused by the shock, respectively. Note that this general shock model extends the model

I in the cases of cumulative damage, extreme damage and run damage.

The distribution function of the system failure time and its mean value are provided

via Laplace transforms in Mallor and Santos [16].
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5 Final remarks and conclusions

The models where a probability is attached to each shock bring together the cumulative

and extreme shock models defining adequately the sequence {P̄k} and are studied as par-

ticular cases by A-Hameed and Proschan [1] and Esary et al [6]. Let Fj be the distribution

function of the damage caused by the jth shock, then for the cumulative shock model

P̄k = F1 ∗ F2 ∗ · · · ∗ Fk(z) and for the extreme shock model P̄k =
∏k

j=1 Fj(z).

As before, different elements are incorporated to get a more realistic model such as the

assumption of a random threshold instead of a prefixed z and the stochastically decrease

of the sequence {Fk}∞k=1.

System

Interarrival � failure

shock time

General failure model

P̄k =
kY

j=1

(1− pj)

Cumulative shock damage

Xi i.i.d

Cumulative shock damage

independent Xi and

Fi(z) decreasing in i

Extreme shock damage

Homogeneous Poisson

process of rate λ

H̄(t) =
∞X

k=0

(λt)k

k!
e
−λt

P̄k

Sufficient conditions on P̄k

H̄(t) : IFR, IFRA

NBU, NBUE, DMRL

h(t) : PF2, PFn

and dual [6]

H̄(t) : HNBUE, HNWUE [14]

h(s + t) : SCn [6]

• Ageing [7]

• Recovery [9]

P̄k = F (k)(z)

H̄(t) : IFRA, IFR

h(t) : PF2 [6]

• Random threshold [6]

H̄(t) : IFR, IFRA, NBU

h(t) : PF2

• l kinds of shocks ind. [6]

H̄(t) : IFRA

P̄k = F1 ∗ · · · ∗ Fk(z)

H̄(t) : IFR, IFRA [6]

h(t) : PF2 [6]

• Random threshold [6]

H̄(t) : NBU

• Dependence [6]

H̄(t) : IFRA

•Independent Xi and

Fi(x) decreas. in i

H̄(t) : IFR [6]

• Ageing

H̄(t) : IFR [6]

and dual [6]

• Random threshold [6]

h(t) : log-concave

Non-homogeneous

Poisson process

H̄(t) =
∞X

k=0

(Λ(t))k

k!
e
−Λ(t)

P̄k

Sufficient conditions on

P̄k and Λ(t)

H̄(t) : IFR, IFRA

NBU, NBUE, DMRL

h(t) : PF2

and dual [1]

H̄(t) : HNBUE, HNWUE [14]

• m components [21]

• Recovery [9]

• m components in series

H̄(t) : IFRA

• m components in series

with random threshold

H̄(t) : IFRA, NBU

and dual [1]

H̄(t) : IFRA [19]

Non-stationary Pure

birth process

H̄(t) =
∞X

k=0

sk(t)P̄k

h(t) =
∞X

k=0

sk(t)λkλ(t)pk+1

sk(t) = P{k shocks in [0, t]}

Conditions on P̄k, λk, λ(t)

H̄(t) : IFR, IFRA

NBU, NBUE, DMRL

h(t) : PF2

and dual [2]

H̄(t) : HNBUE, HNWUE [13]

H̄(t) : IFRA, DFRA [13]

Renewal process

Reliability function for pk

• indep. of k [18]

• dep. of k [17]

• indep. of k and random [20]

• dep. of k and random [24]

Asymp. behaviour

of Tz [25]

Table 2: Independence between the effect and interarrival shock time

Ross [19] extends these two failure modes defining a new damage function Dt such

that:

- Dt(x1, . . . , xn, . . . ,0) represents the damage at time t if exactly n shocks having

magnitudes x1, . . . , xn have occurred by time t, with 0 = (0, 0, . . . );

- Dt is nondecreasing in each of its arguments for t ≥ 0;

410



- Dt(x1, . . . , xn,0) = Dt(xi1 , . . . , xin ,0) whenever (i1, . . . , in) is a permutation of 1, 2,

. . . , n for all n.

By taking Dt(x1, . . . , xn,0) = max{x1, . . . , xn} or Dt(x1, . . . , xn,0) =
∑n

i=1 xi, we

obtain the cumulative and the extreme shock model respectively. All these models are

summarized in the Table 2.

In this work, we have presented the main shock reliability models studied in the

literature which, as far as we know, have not been analysed jointly. So, this task facilitates

us to see what has been done and, what is more important, what is still to be done.
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[13] Klefsjö, B. (1981). Survival under the pure birth shock model. Journal of Applied Probability 18;

554-560.

411
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