On the convergence of multivalued martingales in the limit

Marc Lavie

Laboratoire de Mathématiques Appliquées Université de Pau et des Pays de l'Adour, BP 1155, 64013 Pau Cedex, France.

Abstract

Nous présentons dans cet article une version multivoque d'un théorème du à Talagrand sur la convergence des martingales à la limite, notion beaucoup plus générale que celle de martingale.

Keywords: Martingale in the limit, linear topology, almost sure convergence **AMS Classification** : 60B11, 60G48

1 Preliminaries

The notion of "martingale in the limite" was first introduced by A.G.Mucci ([9]). The principal convergence theorem is due to Talagrand ([10])

Multivalued version of the Talagrand convergence theorem for the martingale in the limit was proved, with respect to the Mosco convergence, by Castaing et Ezzaki ([3], theorem 3.3. in [3]).

The aim of this paper is to extend this theorem to the linear convergence. This result is also a generalization of a theorem due to Choukairi ([4]) for the multivalued pramarts. The notion of martingale in the limit is a generalization of the notion of pramarts.

E-valued martingales in the limit

Let (Ω, Σ, P) be a probability space, E a Banach space and E^* its topological dual, $(\Sigma_n)_{n\geq 1}$ an increasing sequence of sub- σ -fields of Σ such that Σ is the σ -field generated by $\bigcup_{n\geq 1}\Sigma_n$.

Let $X_n : \Omega \to E$ be a random variable for each $n \in \mathbf{N}$. $(X_n, \Sigma_n)_{n \in \mathbf{N}}$ is said to be an *E-valued martingale in the limit* if there is a sequence $(h_n)_n$ of measurable and positive functions such that :

i)
$$\lim_{n} \|h_n\| = 0$$

ii) $\forall m \geq n, \|E^{\Sigma_n}(X_n) - X_n\| \leq h_n \text{ almost everywhere}$

where $E^{\Sigma_n}(X_n)$ is the conditional expectation of X_n with respect to the σ -field Σ_n .

An other notion was introduced by Talagrand, lightly different of the "martingale in the limit" : the notion of MIL, which is a generalization of the "martingale in the limit"

 $(X_n, \Sigma_n)_n$ is said to be a **MIL** if and only if, for each $\varepsilon > 0$, there is p such that, for each $n \ge p$:

$$P\left(\sup_{q}\left\{\left\|X_{q}-E^{\Sigma_{q}}\left(X_{n}\right)\right\|;p\leq q\leq n\right\}>\varepsilon\right)\leq\varepsilon.$$

Convergence results :

1) A real-valued MIL such that $\liminf E(|X_n|) < +\infty$ converges almost every where.

- 2) If $(X_n, \Sigma_n)_n$ is a *E*-valued MIL such that :
- (i) $\liminf \int ||X_n|| dP < +\infty$
- (ii) $x^* \circ X_n \to 0$ for each $x^* \in E^*$

then $||X_n|| \to 0$ a.e.

Multivalued case.

Let (Ω, Σ, P) be a probability space, E a Banach space such that its topological dual E^* is strongly separable, $(\Sigma_n)_{n\geq 1}$ an increasing sequence of sub- σ -fields of Σ such that Σ is the σ -field generated by $\bigcup_{n\geq 1}\Sigma_n$.

The set of nonempty convex and weakly compact subsets of E will be denoted by cw(E).

B and B^* are, respectively, the closed unit balls of E and E^* .

For each open subset U of E, we shall set

 $U^{-} := \{ C \in cw(E) : C \cap U \neq \emptyset \}$

and we shall denote by \mathcal{E} the *Effrös* σ -algebra of cw(E) that is the smallest σ -algebra over cw(E) containing the class

 $\{U^-, U \text{ open in } E\}.$

The two best-known functionals associated with an element C in cw(E) are its distance functional and its support functional, defined by the familiar formulas:

 $d(x, C) = \inf \{ \|x - y\|, y \in C \} (x \in E)$

$$\delta^*(x^*, C) = \sup\left\{ \langle x^*, y \rangle, y \in C \right\} (x^* \in E^*)$$

For any $C \in cw(E)$, we set

 $|C| = \sup \{ ||x|| : x \in C \}.$

A random set will be a multifunction $X : \Omega \longrightarrow cw(E)$ which is measurable with respect to the σ -fields Σ and \mathcal{E} .

We denote by $L^1_{cw(E)}(\Sigma)$ the space of all the random sets taking values in cw(E) such that $\omega \to |X(\omega)|$ is integrable.

Let H be the Hausdorff metric and τ_H be the topology associated to H.

The linear topology τ_L on cf(E) is the topology generated by all sets of the form U^- , where U is an open subset of E, and all sets

$$H(x^*, \alpha) := \{ C \in ckw(E) : \delta^*(x^*, C) < \alpha \}$$

where $x^* \in E^*$ is nonzero and $\alpha \in R$.

 τ_L was first considered by Hess ([5]) and studied by Beer([2]).

We have the following result.

Proposition 1.1. Let $(C_n)_{n \in \mathbb{N} \cup \{\infty\}}$ be a sequence in cf(E). Then: $C_{\infty} = \tau_L - \lim_n C_n$

$$\iff \begin{cases} (i) \ d(x, C_{\infty}) = \lim_{n \to \infty} d(x, C_n), \forall x \in E \\ and \ (ii)\delta^*(x^*, C_{\infty}) = \lim_{n \to \infty} \delta^*(x^*, C_n), \forall x^* \in E^* \end{cases}$$

Reference [2], Theorem 3.4.

For any random set X, we put

$$S^{1}(X, \Sigma) = \{ f \in L^{1}(\Sigma) : f \in X \text{ almost surely} \}.$$

In this definition, Σ may be replaced by any sub- σ -field of Σ .

 $S^1(X, \Sigma)$ is closed if X is closed valued and it is non-empty if and only if the function $d(0, X) \in L^1_{\mathbb{R}}(\Omega, \Sigma, P)$.

The multivalued integral of X is defined, for each $A \in \Sigma$, by

$$\int_{A} X\left(\omega\right) P(d\omega) = cl\left[\left\{\int_{A} f(\omega) P\left(d\omega\right) : f \in S^{1}\left(X,\Sigma\right)\right\}\right]$$

For the basic properties of the multivalued integral, we refer the reader to [1].

Let X be an element of $\mathcal{L}^{1}_{cw(E)}(\Sigma)$, the multivalued conditional expectation of X with respect to Σ_n , denoted by $E^{\Sigma n}(X)$, is an element of $\mathcal{L}^{1}_{cw(E)}(\Sigma)$ such that

$$S^{1}\left(E^{\Sigma n}\left(X\right),\Sigma\right) = \left\{E^{\Sigma n}\left(f\right) : f \in S^{1}\left(X,\Sigma\right)\right\}.$$

2 Convergence theorem for multivalued martingales in the limit.

Definition 2.1. Let $X_n : \Omega \to cw(E)$ be a random set for each $n \in \mathbf{N}$. $(X_n, \Sigma_n)_{n \in \mathbf{N}}$ is said to be a *MIL taking values in* $L^1_{cw(E)}(\Sigma)$ if the following conditions hold :

- (a) $\forall n \in \mathbf{N}, X_n \text{ is } \Sigma_n \text{-measurable},$
- (b) $\forall \varepsilon > 0, \exists p \in \mathbb{N}^*$:

$$n \ge p \Rightarrow P\left[\sup_{p\le q\le n} h\left(X_q, E^{\Sigma_q}\left(X_n\right)\right) > \varepsilon\right] < \varepsilon.$$

The following theorem is an extension of the convergence theorem due to Talagrand ([10]):

Theorem 2.1. Let $(X_n, \Sigma_n)_{n \in \mathbb{N}}$ be a MIL taking values in $L^1_{cw(E)}(\Sigma)$ such that:

(i) $\sup_{n \in \mathbb{N}} \int_{\Omega} |X_n(\omega)| P(d\omega) < +\infty$

(ii) there is a random set $K : \Omega \to cw(E)$ such that $X_n(\omega) \subset K(\omega)$, for each n and for each ω .

Then, there is $X_{\infty} \in \mathcal{L}^{1}_{cw(E)}(\Sigma)$ such that $X_{\infty} = \tau_{L} - \lim_{n \to \infty} X_{n}$ almost surely.

Proof

Let us first recall tree formulas deduced from the Hormander's formula and the properties of the Hausdorff distance.

For each C and for each D in cw(E), we set :

$$H(C,D) = \sup_{x^* \in B^*} |\delta^*(x^*,C) - \delta^*(x^*,D)| \quad (1)$$

or

$$H(C,D) = \sup_{x \in E} |d(x,C) - d(x,D)|$$
(2)

and, also, for each $x \in E$,

$$d(x,C) = \sup_{x^* \in B^*} \left[\langle x^*, x \rangle - \delta^*(x^*,C) \right]$$
(3).

We deduce from (1) and definition 2.1 that, if $(X_n, \Sigma_n)_{n \in \mathbf{N}}$ is a bounded MIL taking values in $\mathcal{L}^1_{cw(E)}(\Sigma)$, then for each $x^* \in B^*$, $(\delta^*(x^*, X_n), \Sigma_n)_{n \in \mathbf{N}}$ is a real-valued bounded MIL. Using Talagrand theorem (theorem 4 in [10]), it follows that $(\delta^*(x^*, X_n), \Sigma_n)_{n \in \mathbf{N}}$ converges almost surely for each $x^* \in B^*$.

Then, we give an useful lemma proved by Christian Hess (see [6], Lemme 5.2).

Lemma 3.1. Let D^* be a countable subset of E^* which is dense with respect to the Mackey topology and let $(X_n)_{n \in \mathbb{N}}$ be a sequence in $L^1_{cw(E)}(\Sigma)$ such that :

- (i) $\sup_{n \in \mathbf{N}} \int_{\Omega} |X_n(\omega)| P(d\omega) < +\infty$
- (ii) there is a random set $K : \Omega \to cw(E)$ and a set N_0 such that $P(N_0) = 0$ and $X_n(\omega) \subset K(\omega)$ for each $(\omega, n) \in (\Omega \setminus N_0) \times \mathbf{N}$,
- (iii) for each $x^* \in D^*$, $\delta^*(x^*, X_n)$ converges almost surely.

Then, there is a random set $X_{\infty} \in L^{1}_{cw(E)}(\Sigma)$ such that, for each $x^{*} \in E^{*}, \delta^{*}(x^{*}, X_{n})$ converges almost surely to $\delta^{*}(x^{*}, X_{\infty})$.

We recall that E^* is dense with respect to the Mackey topology if and only if E is separable.

Then, by the lemma below, there is a random set $X_{\infty} \in L^{1}_{cw(E)}(\Sigma)$ such that, for each $x^{*} \in E^{*}, \delta^{*}(x^{*}, X_{n})$ converges almost surely to $\delta^{*}(x^{*}, X_{\infty})$.

We deduce now from (2) that, for each $x \in E$, $(d(x, X_n), \Sigma_n)_{n \in \mathbb{N}}$ is a real-valued bounded MIL. Using Talagrand theorem, $(d(x, X_n), \Sigma_n)_{n \in \mathbb{N}}$ converges almost surely to a function f_x , for each $x \in E$.

Then, there is a subset N' of Ω such that P(N') = 0 and $\lim_n d(x, X_n(\omega)) = f_x(\omega)$ for each $\omega \notin N'$.

We proceed now to show that $f_x = d(x, X_{\infty})$.

Let $D_0 = \{z_j^* : j \in N\}$ be a countable subset of B^* such that D_0 is dense with respect to the Mackey topology.

It follows from (3) that

$$d(x, X_n) = \sup_j \left[< z_j^*, x > -\delta^*(z_j^*, X_n) \right].$$

Then, for each $j \in N$, the sequence $(\langle z_j^*, x \rangle - \delta^*(z_j^*, X_n))_n$ converges almost surely to $\langle z_j^*, x \rangle - \delta^*(z_j^*, X_\infty)$.

Using (3), we have, for each $j \in N$:

$$\langle z_j^*, x \rangle - \delta^*(z_j^*, X_n) \le d(x, X_n)$$

and a passage to the limite implies that :

$$d(x, X_{\infty}) \leq f_x$$
 almost surely

for each $x \in E$.

Using the classical notations of the Mosco convergence, we set, for each $\omega \in \Omega$,

 $s - liX_n(\omega) = \{x \in E : \text{ there is a sequence } x_n\}$

which converges in norm to x with $x_n \in X_n(\omega)$ for each n.

Applying theorem 3.3. in [3], we have $X_{\infty} = s - liX_n$ almost surely. By an inequality proved by Tsukada (theorem 2.2. in [11]), we have

$$\limsup_{n} d(x, X_n) \le d(x, s - liX_n), \text{ for each } x \in E.$$
(4)

Then :

 $f_x \leq d(x, X_\infty)$ almost surely

and we conclude that $X_{\infty} = \tau_L - \lim_n X_n$.

References

 R.J.AUMANN. Integrals of set-valued functions, J.Math.Anal.Appl. 12 (1965), p.1-12.

- [2] G.BEER. Support and distance functionals for convex sets. Numer.Funct.Anal.Optim.10 Nos 1-2 (1989), p.15-36
- [3] C.CASTAING-F.EZZAKI. Mosco convergence for multivalued martingales in the limit. C.R.Acad.Sc.Paris, t.312, Ser. I, 695-698
- [4] A.CHOUKAIRI-DINI. On almost sure convergence of vecto valued pramarts and multivalued pramarts. J.Convex Anal. 3, No 2 (1996), 245-254.
- [5] C.HESS. Mesurabilité, convergence et approximation des multifonctions à valeurs dans un e.l.c.s. Séminaire d'Analyse Convexe de l'Université de Montpellier, Exposé No 9, (1985).
- [6] C.HESS. On Multivalued Martingales whose values may be unbounded: martingale selectors and Mosco convergence. *Journal of Multivariate Analysis*, **39**, No 1, (1991), p.175-201.
- [7] M.LAVIE. Fonction caractéristique d'un ensemble aléatoire. Applications à la convergence de martingales et de sommes d'ensembles aléatoires. C.R.Acad.Sci.Paris Sér.I Math., 314 (1992), p.399-402.
- [8] U.MOSCO. Convergence of convex sets and of solutions of variational inequalities, Advances in Math. 3 (1969), p.510-585.
- [9] A.G.MUCCI. Another martingale convergence theorem. Pacific J.Math. 64 (1976) 539-541
- [10] M.TALAGRAND. Some structure results for martingales in the limit and pramarts. The Annals of Probability 13, No 4 (1985), 1192-1203
- [11] M.TSUKADA. Convergence of best approximations in a smooth Banach space. J. Approx. Theory, 40 (1984), 301-309.
- [12] R.J.WIJSMAN. Convergence of sequence of convex sets, cones and functions, II, *Trans.Amer.Math.Soc.* **123**, (1966), p.32-45.