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Monograf́ıas del Semin. Matem. Garćıa de Galdeano. 27: 377–383, (2003).

Abstract

The stability of an equilibrium point of a 2-D Hamiltonian system, in the pres-

ence of resonances, is decided by means of a geometrical criterium, when the cor-

responding quadratic part is not sign defined. It is proven that this method is the

geometrical counterpart of a theorem of Cabral and Meyer which constitutes an

extension of the Arnold’s theorem.
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1 Introduction

Let us consider the problem of the stability of an equilibrium for a Hamiltonian system

with two degrees of freedom. Let us assume that the corresponding linearized system

is stable and that the eigenvalues associated to the linear part are of the form ±ω1i,

±ω2i with ω1, ω2 positive real numbers, we suppose to be distinct. After a suitable linear

transformation the Hamiltonian can be expressed as

H = H2 + F (q1, q2, p1, p2), (1)

where

H2 =
1

2
ω1(q

2
1 + p2

1)±
1

2
ω2(q

2
2 + p2

2).

There are two different cases to be considered. In the first one, H2 is definite (the plus

sign) and the stability follows from the theorem of Dirichlet [9]. In the second one, H2 is

indefinite (the minus sign) and, now, it is not possible to determine the stability from the

linear part and higher orders must be considered.

Let us suppose that mω1 − nω2 6= 0 for m and n integers satisfying m + n ≤ 2l and

write the Hamiltonian H in Poincaré action-angle variables (Ψ1,Ψ2, ψ1, ψ2) defined by

qj =
√

2Ψj cosψj, pj =
√

2Ψj sinψj, j = 1, 2.
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Assuming that H is in Birkhoff normal form up to order 2l we get

H = H2(Ψ1,Ψ2) +H4(Ψ1,Ψ2) + · · ·H2l(Ψ1,Ψ2) (2)

where H2k, 1 ≤ k ≤ l, is a homogeneous polynomial of degree k in Ψi with real coefficients.

In particular

H2 = ω1Ψ1 − ω2Ψ2, 0 < ω1, 0 < ω2

H4 = 1
2
(AΨ2

1 − 2BΨ1Ψ2 + CΨ2
2).

Let D2k = H2k(ω2, ω1), Arnold’s theorem [1] ensures the stability of the origin if for some

k = 1, 2, . . . , l D2k 6= 0.

The very first application of the theorem is due to Leontovich [6] and Deprit & Deprit-

Bartolomé [3] to study the stability of the Lagrange’s equilateral solutions of the restricted

three-body problem for all the mass ratios except for the resonant cases 1:2 and 1:3. They

are precisely the cases where the Arnold’s theorem fails.

For the resonant cases, several results were established by Sokolski [10, 11] and Markeev

[7] for resonances of order less than five. Recently, Cabral & Meyer [2] gave an extension

of the Arnold’s theorem that provides an stability criterium for both resonant and non

resonant cases:

Theorem 1 Let us consider the Hamiltonian (1) in normal form up to order s and ω1

and ω2 satisfying a resonance condition of order r (nω1 = mω2 and m+ n = r) such that

r < s and

H = H2(Ψ1,Ψ2) +H4(Ψ1,Ψ2) + · · ·+H2l(Ψ1,Ψ2) +Hs(Ψ1,Ψ2, nψ1 +mψ2), (3)

where s = 2l + 1 or s = 2l + 2, Hs beeing a homogeneous polynomial of degree s in
√

Ψ1

and
√

Ψ2 with coefficients which are finite Fourier series in the single angle nψ1 +mψ2.

Let us define

Ψ(ψ) = Hs(ω2, ω1, ψ),

where ψ = nψ1 + mψ2 and D2k = H2k(ω2, ω1). If for some k = 2, . . . , l we have that

D2k 6= 0, then Arnold’s theorem guarantees the stability of the origin. Therefore, suppose

that D2k = 0 for k = 2, . . . , l. Then, if Ψ(ψ) 6= 0 for all ψ, the origin is stable and if

Ψ(ψ) has a simple zero, then the origin is unstable.

This result has a geometrical counterpart suggested by Elipe et al. [5]. The idea is

very simple and it consists to look at the orbits around the origin in the phase space after

the normalization procedure. Then, closed orbits around the equilibrium imply stability

while asymptotic orbits imply instability. The key lies on a suitable representation of the

normal form of the Hamiltonian in terms of an appropriate set of variables that underlie

the topological structure of the phase space.
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2 Normal forms

Definition 1 Let be

H = H2 +H3 + . . .

the Hamiltonian function where

H2 =
ω1

2
(q2

1 + p2
1)−

ω2

2
(q2

2 + p2
2),

Hs =
∑

i+j+k+l=s

aijklq
i
1q

j
2p

k
1p

l
2, s > 2.

We say that H is in the Birkhoff normal form up to order N if DHs = 0 for s ≤ N ,

where

D = ω1

(
q1
∂−
∂p1

− p1
∂−
∂q1

)
− ω2

(
q2
∂−
∂p2

− p2
∂−
∂q2

)
.

That is, H is in normal form up to order N if, for each s ≤ N , we get {H2;Hs} = 0,

where {−;−} stands for the Poisson bracket.

The topology of the phase space after normalization depends on the structure of those

monomials that belong to the normal form. In order to characterize them, and following

Elipe [4], it is preferred to introduce canonical complex variables defined as

qk =
1√
2
(uk + ivk), pk =

i√
2
(uk − ivk), k = 1, 2.

Now, Hs is an s degree homogeneous polynomial in the variables uk, vk and the operator

D is given by

D = iω1

(
u1
∂−
∂u1

− v1
∂−
∂v1

)
− iω2

(
u2
∂−
∂u2

− v2
∂−
∂v2

)
.

Thus, a monomial uα1
1 u

α2
2 v

β1
1 v

β2
2 is in normal form if it satisfies

(ω1,−ω2) · (α1 − β1, α2 − β2) = 0.

The inner product above vanishes in the trivial case α1 = β1 and α2 = β2. So, a monomial

that is a product of powers of u1v1 and u2v2 is in normal form. Note that u1v1 and u2v2

corresponds to iΨ1 and iΨ2, where Ψ1 and Ψ2 are the momenta in Poincaré variables.

If, in addition, ω1 and ω2 satisfy the resonant condition of order r, nω1 = mω2,

(mcd (m,n) = 1 and m + n = r), the monomials which are powers of un
1u

m
2 and vn

1 v
m
2

are also in the normal form. In this case, the normal form is not solely a function of

the momenta in Poincaré variables, but also of the angles, although in the combination

nψ1 +mψ2. Indeed, depending on the order of the resonance we have

un
1u

m
2 = Ψ

n/2
1 Ψ

m/2
2 [cos(nψ1 +mψ2)− i sin(nψ1 +mψ2)] ,

vn
1 v

m
2 = (−i)n+mΨ

n/2
1 Ψ

m/2
2 [cos(nψ1 +mψ2) + i sin(nψ1 +mψ2)] .
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Thus, angles appear at orders s = k(m+ n) + 2j, (k ≥ 1, j ≥ 0).

Taking into account the previous considerations, we can define, for a resonance of

order r, the following four variables (invariants)

I1 = u1v1, I2 = u2v2, I3 = un
1u

m
2 , I4 = vn

1 v
m
2 ,

so that each term of the normal form can be expressed as a function of these four variables.

In particular,

Hs =
∑

2(α1+α2)+l(α3+α4)=s

aα1α2α3α4I
α1
1 Iα2

2 Iα3
3 Iα4

4 .

Note that the four invariants are not independent, but satisfy the relation

In
1 I

m
2 = I3I4. (4)

Besides, iω1I1 − iω2I2 is an integral provided that the Hamiltonian is in Birkhoff normal

form.

3 Extended Lissajous variables

The discussion in the previous section suggests that the reduced phase space is generated

by four variables not all independent, but satisfying the functional equation (4). Taking

into account the formal integral H2, the reduced phase space is regarded as a two dimen-

sional surface for each H2 = cte. For this reason, it is convenient to introduce a new set

of variables with a twofold objective. On the one hand, to introduce new real invariants

and on the other hand, to serve as a parameterization of the reduced phase space. These

are the so called extended Lissajous variables [4], specially useful to handle oscillators in

resonance.

Under the assumption nω1 = mω2 we consider the transformation

q1 =

√
Φ1 + Φ2

m
sinm(φ1 + φ2), P1 =

√
Φ1 + Φ2

m
cosm(φ1 + φ2),

q2 =

√
Φ1 − Φ2

n
sinn(φ1 − φ2), P2 =

√
Φ1 − Φ2

n
cosn(φ1 − φ2).

In these coordinates, H2 expresses as ωΦ2 (ω1 = mω, ω2 = nω) and they are related to

the Poincaré variables through the formulae

2mΨ1 = Φ1 + Φ2, nψ1 +mψ2 = 2mnφ1,

2nΨ2 = Φ1 − Φ2, nψ1 −mψ2 = 2mnφ2.

It is worth to note that the Birkhoff normal form is a function of the momenta Φ1, Φ2

and the angle φ1, as it follows from the expressions for the four invariants I1, I2, I3 and
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I4. Provided that Ik are complex, another set of invariants, a combination of the previous

one, is introduced. They are, in terms of the Lissajous variables (see [4] for details)

M1 = 1
2
Φ1,

M2 = 1
2
Φ2,

S1 = 2−(m+n)/2(Φ1 − Φ2)
m/2(Φ1 + Φ2)

n/2 sin 2mnφ1,

C1 = 2−(m+n)/2(Φ1 − Φ2)
m/2(Φ1 + Φ2)

n/2 cos 2mnφ1.

(5)

Now, each term of the normal form is expressed as

Hs =
∑

2(α1+α2)+l(α3+α4)=s

aα1α2α3α4M
α1
1 Mα2

2 Cα3
1 Sα4

1 ,

proving that the normal form is a function of these four invariants. Besides, they satisfy

C2
1 + S2

1 = (M1 +M2)
n(M1 −M2)

m (6)

together with the constraint M1 ≥ |M2|, being M2 a constant.

Note that equation (6) defines the reduced phase space as a revolution surface for each

constant value of M2. In particular, the origin is the vertex of the surface corresponding

to M2 = 0. Also note that the extended Lissajous variables serve to parameterize the

surface (6) and that φ1 is equivalent to the angle ψ in the theorem of Cabral & Meyer.

4 The geometrical criterium

Let us consider the orbits in the variety where the origin lies (M2 = 0), we claim that

- if the orbits around the origin are closed then the origin is stable.

- if there are asymptotic orbits to the origin then the origin is unstable.

Since the orbits are the level contour curves of the Hamiltonian function on the surface

(6), it follows that

Theorem 2 Let be H(C1, S1,M1,M2) in the normal form expressed in terms of the in-

variants and let be Hs the first term of the normal form that not vanishes for M2 = 0. Let

be G1 the surface defined by Hs(C1, S1,M1, 0) = 0 and G2 the surface C2
1 + S2

1 = Mm+n
1 ,

then:

- If G1 and G2 intersect transversaly, the origin is unstable.

- If G1 and G2 intersect only at the origin, the origin is stable.
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Proof:

It is enough to demonstrate that the theorem is equivalent to that of Cabral and Meyer.

Indeed, let us suppose that the normal form for the Hamiltonian is that of equation (3).

Express the normal form in terms of the invariants and take M2 = 0. It is obvious that

D2k = 0 for k = 2, . . . , l is equivalent to H2k(M2 = 0) = 0. On the other hand, provided

Hs is a homogeneous polynomial, we have for M2 = 0

Hs = αM
s/2
1 Ψ(2mnφ1) = αM

s/2
1 Ψ(ψ),

where Ψ(ψ) is the function defined in the theorem of Cabral and Meyer. So, if we consider

the intersection of the surface defined by Hs = 0, that is G1, and G2 we observe that:

• If Ψ(ψ) has a simple zero ψ∗, then G2 intersects the plane ψ = ψ∗ and two asymptotic

orbits to the origin appear, so that the origin is unstable.

• If Ψ(ψ) 6= 0 for all ψ the only point in common of the surfaces G1 and G2 is the

vertex and the rest of the orbits, that is, the intersection of the surfaces defined by

Hs = h with G2 are all closed and the origin is stable.
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