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Abstract

We present the modelling of several effects driving the species segregation in oil

deposits. In a first part , a local model is given. Then, homogenization methods

are used in order to obtain macroscopic laws. We insist on upscaling in adsorption

phenomena as methods used here are slightly different from usual ones.
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1 Local equations

In this study, Ω denotes an open part of IRn (n=2 or 3), which spatial basis is (ek)k∈{1···n},

Q =]0, T [×Ω. We note Y the unit cube, divided in two parts, the fluid and the solid

phases Yf and Ys. We define the medium porosity by φ =
meas(Yf )

meas(Y )
.

We consider a n-components fluid flowing in Ω. Taking into account convection, thermal

diffusion and diffusion, matter and heat fluxes ~Ji and ~Jq are written

~Ji = ρci ~U − ρ
n∑

j=1

τij∇cj − ρδi
θci(1− ci)∇θ and ~Jq = θ ~U − λ∇θ.

Neglecting Dufour effect, conservation equations are given by ρCp∂tθ + div( ~Jq) = 0

ρ∂tci + div( ~Ji) = 0
⇐⇒


∂tθ + div(θ ~U − κ∇θ) = 0

∂tci + div(ci ~U −
n∑

j=1

τij∇cj − δi
θci(1− ci)∇θ) = 0

where ci denotes the mass fraction of the ith component, θ the temperature, τij the

diffusive coefficients, κ the medium thermal diffusivity. The stationary velocity field ~U is

the solution of Navier-Stokes equations which will not be studied here.

Remark 1 The mathematical analysis of these type of equations has already been done in

previous works. The reader should refer to [4] or [6].
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2 Upscaling

In this part, ε denotes a positive real parameter, denoting the ration between macro and

micro scales. We are interested in studying unknowns behaviours when ε → 0. In this

study y denotes a local variable (y = x
ε
) and x the global variable.

The treatment of flow equations has been made using asymptotic developments and will

not be detailed here. This mathematical transition from a phenomenological law to an

empiric one (Darcy’s law) has already been studied a lot. A rigorous proof of the homog-

enization of permanent Navier-Stokes equation has been done by Tartar in [7], while

the homogenization of “Stokes type” equations has been studied by Antontsev et al.

in [3].

2.1 Upscaling in diffusive effects

We consider the energy equation at steady state, with some boundary conditions at free

media-porous media interfaces, the temperature and the fluxes continuity, associated to

respective thermal diffusivities. −κf∆θ + ~U .∇θ = 0 in the free medium,

κs∆θ = 0 in the porous structure.
(1)

The variational formulation associated to this problem is the following one:

(Eθ
ε )


∀v ∈ H1

0 (Ω),
∫
Ω
κ(
x

ε
)∇θε.∇vdx−

∫
Ω
χ

Ωf,ε
θε
~Uε.∇vdx = 0

θε|∂Ω = g
(2)

where g is a function in H
1
2 (∂Ω) and κ the function defined by

κ(.) = κfχ(Y \Y s) + κsχ(Ys) = κfχ(Yf ) + κsχ(Ys),

with κf and κs the thermal diffusivities of the solid and the fluid media. Our aim here is to

use a process of two scale convergence, in order to dispose of a strong enough convergence

on the temperature to introduce it in the mass conservation equation and to conclude. We

distinguish in the following argumentation four main parts; first, we deduce with a priori

estimates a result of two scale convergence for the unknown θε(theorem 1). Secondly,

we multiply the micro state equation by appropriated test-functions in order to obtain

a variational formulation at the limit state. An integration part by part allows then to

determine the macroscopic problem. A last step consists in eliminating local variables in

the macroscopic problem by decoupling this one from a problem posed on an elementary

cell (theorem 2). We recall in a first time the following result:

Theorem 1 The generalized sequences (θε)ε and (∇θε)ε two-scale converge respectively

to elements θ∗(x) of H1(Ω) and (∇xθ
∗ +∇yξ(x, y)) of H1(Ω)× L2[Ω;H1

] (Y )\IR].
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The proof of this theorem has already been done in the case of perforated media by

Allaire in [1]. Now, we are able to determine the homogenized problem verified by the

limit state θ∗:

Theorem 2 θ∗ is the unique solution in H1(Ω) of the following homogenized problem

(Eθ∗)


∀v ∈ H1

0 (Ω),
∫
Ω

Λ̃∇θ∗.∇vdx−
∫
Ω
φθ∗ ~U .∇vdx = 0

θ∗|∂Ω = g
(3)

where Λ̃ is the elliptical tensor given by

Λkl =
∫

Y
κ(∇yσk + ~ek).~eldy

=
∫

Yf

κf (∇yσk + ~ek).~eldy +
∫

Ys

κs(∇yσk + ~ek).~eldy (4)

and (σk) is a family of solutions of the following problem

(Eθ
cell)



σk ∈ H1
] (Y )

divy(κf [∇yσk + ~ek]) = 0 inYf

divy(κs[∇yσk + ~ek]) = 0 inYs

[κf (∇yσk + ~ek)− κs(∇yσk + ~ek)] .~n = 0 on ∂Yf\∂Y.

(5)

Proof

We rewrite the energy equation in free medium (1) and multiplying this one by the test

function ψ(x) + ψ1(x, y) where ψ ∈ D(Ω) and ψ1 ∈ D[Ω; C∞] (Y )], we obtain, with a

Green’s formula,∫
Ω

∫
Y
κ(
x

ε
)∇θε.∇(ψ(x) + εψ1(x,

x

ε
))dxdy −

∫
Ω

∫
Y
χΩf,ε

θε
~Uε.∇(ψ(x) + εψ1(x,

x

ε
))dxdy

=
∫
Ω

∫
Y
fε(ψ(x) + εψ1(x,

x

ε
))dxdy.

Noticing that

∇(ψ(x) + εψ1(x, y)) = ∇xψ(x) +∇yψ1(x, y) + ε∇xψ1(x, y),

we get, passing to the limit when ε→ 0,∫
Ω

∫
Y
κ(y) [∇xθ

∗ +∇yξ(x, y)] . [∇xψ(x) +∇yψ1(x, y)] dxdy

−
∫
Ω

∫
Y
χΩf

φθ∗ ~U . [∇xψ(x) +∇yψ1(x, y)] dxdy =
∫
Ω

∫
Y
fψ(x)dxdy

for all (ψ, ψ1) ∈ D(Ω) × D[Ω; C∞] (Y )] and thus, by density, for all (ψ, ψ1) ∈ H1
0 (Ω) ×

L2[Ω;H1
] (Y )/IR]. We will first have defined the function f = div(κ(x)∇ĝ+φχ

Ωf
ĝ ~U). The

problem can then be interpreted by
divy (κ(y)(∇θ∗ +∇yξ(x, y))) = 0 in Ω× Y

divx

(
−
∫

Y
κ(y)(∇θ∗ +∇yξ(x, y))dy + χΩf

φθ∗ ~U
)

= 0 in Ω× Y

θ∗|∂Ω = g.
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The proof relies then on the consideration of solutions σk(x, y) of the problem (Eθ
cell), and

the function ξ(x, y) defined by the relation

ξ(x, y) =
3∑

k=1

∂θ∗

∂xk

σk(x, y). (6)

Having defined the tensor Λ̃ by

Λkl =
∫

Y
κ(y)[~ek +∇yσk(x, y)].~eldy,

one can easily get the following weak formulation

(Eθ∗)


∀v ∈ H1

0 (Ω), −
∫
Ω

Λ̃∇θ∗.∇vdx+
∫
Ω
φθ∗ ~U .∇vdx = 0

θ∗|∂Ω = g.

The homogenized problem has been entirely determined. We remark that it is a problem

very similar to the one posed in a free medium. The study of such a problem is not

necessary as soon as the tensor introduced has properties (symmetry, pseudo-ellipticity)

that allow to conclude immediately, using analysis done for the free medium problem. The

complete determination of the thermal field in the porous medium via the homogenized

equation requires to solve the problem (Eθ
cell) and the knowledge of the functions (σk) and

more precisely the estimation of energies relative to these functions (the term Λkl), less

expensive in terms of computations.

2.2 Soret effect equations

In this part, we are interested in the homogenization of mass conservation equations of

each component of the mixture. The sorption effects are not considered here as they will

be treated in a next part. This model is mainly different from the energy one as the

quantities ci,ε are defined on a domain Ωε,f depending on the parameter ε. This difficulty

is overcame by introducing an extension operator.

We consider the convective-diffusive equations with Soret effect in Ωf,ε

∀ i ∈ {1..n}, ∂tci,ε + ~Uε.∇ci,ε −
n∑

j=1

τij∆cj,ε − δi
θdiv(ci,ε(1− ci,ε)∇θε) = 0 (7)

associated to initial and boundary conditions
n∑

j=1

τij
∂cj,ε
∂n

+ δi
θci,ε(1− ci,ε)

∂θε

∂n
= 0

ci,ε(x, 0) = c0i .

The variational formulation associated to this problem is the following one:∫
Ω
χΩf,ε

∂tci,εvdx−
∫
Ω
χΩf,ε

ci,ε ~Uε.∇vdx

+
∑
j

τij

∫
Ω
χΩf,ε

∇cj,ε.∇vdx+
∫
Ω
χΩf,ε

δi
θci,ε(1− ci,ε)∇θε.∇vdx = 0

(8)
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2.2.1 Behaviour of c̄i,ε

One can easily prove (cf. for example [4]) that unknowns ci,ε are bounded in H1(Qε),

independently of ε. The method consists in searching an extension operator on H1(Q) for

the unknowns that allows to conserve such a property. Thus, we introduce the extension

operator Pε

Pε :

∣∣∣∣∣∣ H
1(Qε) −→ H1(Q)

ci,ε 7−→ Pε(ci,ε) = c̄i,ε

which is continue, with a continuity constant Cp independent of ε. This operator allows

to conserve a priori estimates, independently of ε. As a direct consequence, we have

‖c̄i,ε‖1,Q ≤ Cp‖ci,ε‖1,Qε ≤ C ′ (9)

C ′ being independent of ε. Since Q is a bounded lipschitzian part, we can apply the

Rellich Kondrachoff theorem which ensures us of the compacity of H1(Q) in L2(Q). The

inequality (9) allows to prove the existence of an extracted subsequence of c̄i,ε that con-

verges weakly in H1(Q). The injection of H1(Q) in L2(Q) being compact, there exists an

extracted subsequence -again denoted by (c̄i,ε)- which converges strongly in L2(Q) and

almost everywhere in Q to a limit ci. The sequel of the proof is not detailed here (cf. [6])

and remains similar to the one given for energy equation. The final result is given in

Theorem 3 The sequence c̄i,ε converges to the solution of a problem associated with the

variational formulation∫
Ω
φ∂tcivdx−

∫
Ω
φci ~U .∇vdx

+
∑
j

τij

∫
Ω

[
Υ̃∇cj

]
.∇vdx+

∫
Ω
ci(1− ci)[Σ̃i∇θ∗].∇vdx = 0

(10)

where Υ̃i and Σ̃i are the tensors defined by

(Σ̃i)kl = δi
θ(Υ̃)kl (11)

=
δi
θ

L3 −meas(Y )

∫
Yf

(∇yωk + ~ek)(∇yωl + ~el)dy (12)

with (ωk)k=1,2 is a family of functions, solutions of problems on the elementary cell Y
ωk ∈ H1

] (Y )

−divy(∇yωk + ~ek) = 0 inYf

(∇yωk + ~ek).~n = 0 on ∂Yf\∂Y.
(13)

Remark 2 The main difficulty in the proof of the convergence remains in the fact that

quantities ci,ε are defined on a part Ωε,f . Other techniques can be used, as the proof of the

compacity of the injection of H1(Ωε,f ) in L2(Ωε,f ), which is uniform in ε (this is a suited

version of Rellich theorem to the perforated media).
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2.3 Upscaling in sorption effects

2.3.1 Statement of the problem

In this part, we are interested in adsorption phenomena occurring on the porous surface.

The notations used here are similar to the previous part ones. Adsorption phenomena

occurring on fluid-solid interface Γ, we have to define Σε = Γε×]0, T [, where Γε = ∂Ωε,f \
∂Ωε. The repartition of the species into the fluid is modelized by a classic “convecto-

diffusive” equation

∂tcε + div(cε ~Uε − τ∇cε) = 0 in Ωf,ε. (14)

The adsorption effects are translated by a boundary condition on the fluid-solid interface

of the type

−τ ∂cε
∂n

= ελ(
x

ε
)ϕ(cε) on Γε (15)

where λ is an element of L∞] (Γ) and D the diffusion coefficient of the component in

the fluid. The initial and the complete boundary conditions remain similar to the ones

considered in the first part. Thus, with a Green’s formula and equality (15) we obtain

the variational formulation with a sink term∫
Ωf,ε

∂tcεvdx −
∫
Ωf,ε

cε ~Uε.∇vdx

+ τ
∫
Ωf,ε

∇cε.∇vdx = −ε
∫
Γε

λ(
x

ε
)ϕ(cε)vdσε (16)

for “regular enough” functions v defined on Q̄. One can easily verify that the problem

(16) admits a unique solution (evolutive parabolic problem with a non linear sink term).

2.3.2 Irreversible case: The Langmuir isotherm

We are interested in the case of full irreversible adsorption, given by the Langmuir’s model,

one of the most classically used isotherm. The flux at the interface is then described by

ϕ : r ∈ IR 7−→ ϕ(r) =

(
αr

1 + βr
− csat

)+

. (17)

csat being a saturation value.

Proposition 1 We have the following estimates:

∃C1 > 0, ‖cε‖H1(Qε) ≤ C1, ∃C2 > 0, ‖ϕ(cε)‖H1(Qε) ≤ C2.

The function ϕ being lipschitzian and vanishing at r = 0, with a Lipschitz constant

Lip(ϕ), we get that ϕ(cε) is bounded in H1(Qε) and

‖ϕ(cε)‖H1(Qε) ≤ Lip(ϕ)‖cε‖H1(Qε). (18)
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Proposition 2 (Langmuir’s isotherm)

The generalized sequence (cε)ε converges to an element c, solution of the equation

φ∂tc+ div
(
φc~U − τΥ̃∇c

)
+
[∫

Γ
λ(y)dσ(y)

]
ϕ(c) = 0 in Q. (19)

Proof

Considering the variational formulation verified by cε, and integrating the inequality (16)

on [0, T ] , we have∫ T

0

∫
Ωf,ε

∂tcεvdxdt −
∫ T

0

∫
Ωf,ε

cε ~Uε.∇vdxdt

+ τ
∫ T

0

∫
Ωf,ε

∇cε.∇vdxdt = −ε
∫ T

0

∫
Γε

λ(
x

ε
)ϕ(cε)vdσεdt.

The convergence of convective, diffusive and evolutive terms has already been proved in

the previous parts. In a first time we use a suitable extension c̃ε of the unknowns cε in

order to obtain a constant C > 0, independent of ε, such that

‖c̃ε‖H1(Qε) ≤ C ‖cε‖H1(Qε). (20)

The tricky point consists in passing to the limit in the term ε
∫
Γε

λ(
x

ε
)ϕ(cε)vdσε.

With this aim in view, we use results of two scale convergence for the expressions on

the boundaries. These results, introduced by Allaire, Damlamian and Hornung in

[2], are the generalization to the boundaries of the two scale convergence notion introduced

in [1] and have been applied to diffusive equations with Fourier type boundary conditions.

In the following, we will denote this type of convergence by uε

2−scale

−→Γ u0. Similar problems

of reactions at fluid-solid interfaces had been studied in [5].

The adaptation of this notion to our model does not give any difficulty with the help of

proposition (1). Thus, taking for test function v = ϕ(cε) in the variational formulation

(16), we easily obtain the inequality

ε
∫ T

0

∫
Γε

|λ(
x

ε
)ϕ(x)|2dσε(x) ≤ C. (21)

Therefore, as mentioned in [2], there exists a function ϕ(x, y) ∈ L2(Ω;L2(Γ)) such that

ϕε

2−scale

−→Γ ϕ. We have the following convergence properties:

ε′
∫ T

0

∫
Γε′
λ(
x

ε′
)ϕ(cε′)φ(t, x,

x

ε′
)dσε′(x)dt

ε′→0−→
∫

Q

∫
Γ
λ(y)ϕ(c)φ(t, x, y)dσ(y)dxdt (22)

for each continuous function φ(x, y) ∈ C[Ω̄; C](Y )]. Moreover, with the compacity of the

injection from H1(Q) in L2(Q), it comes

c̃ε′ ⇀ c in H1(Q) weakly, c̃ε′ → c in L2(Q) strongly.

and then ϕ(c̃ε′) −→ ϕ(c) in L2(Q) strongly.

The previous proof remains true for all lipschitzian function ϕ, which is non decreasing

and which vanishes at 0, that allows to consider a wide set of natural behaviours.

375



2.3.3 The reversible case: the Freundlich isotherm

We consider here the reversible case which can be modelized by the Freundlich isotherm:

ϕ : r ∈ IR 7−→ ϕ(r) = rp (0 < p < 1) (23)

which is translated by a condition on the fluid-solid interface

−∂cε
∂n

= ελ|cε − csat|p−1(cε − csat) on Γε. (24)

Proposition 3 (Freundlich isotherm)

The macroscopic conservative equation is the following one:

φ∂tc+ div
(
φc~U − τΥ̃∇c

)
= −λmeas(Γ)|c− csat|p−1(c− csat) in Q. (25)

The proof of such a result has already been established in the case of the homogeniza-

tion of chemical reactions between fluid and solid phases at the interface.
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