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Abstract

In this paper we present an approximation method of surfaces by a new type of

splines, which we call fairness bicubic splines, from a given Lagrangian data set. An

approximating problem of explicit surfaces is obtained by minimizing a quadratic

functional in a parametric space of bicubic splines. The existence and uniqueness of

this problem are shown as long as a convergence result of the method is established.

We analyze some numerical and graphical examples in order to show the validity of

our method.
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1 Introduction

In Geology and Structural Geology the reconstruction of a curve or surface from a scat-

tered data set is a commonly encountered problem. The theory of Dm–splines over an

open bounded set has been introduced at the first time by M. Attéia [1]. We have enriched

this theory and extended it to the variational spline functions [6] where the early works

are therein.

Several works have used the variational approach specifically minimizing some fairness

functional (see for example [4], likewise this functional also can represent the flexion energy

of a thin plate [3]) on a finite element space (see [5] and [7]) in order to simplify both

characterisation and computation of the solution. So we have planned to solve in this

work a variational approximation problem on a finite dimensional space that is not a

finite element one. This is why we focus in this paper our interest to minimize a similar

fairness functional on a space of bicubic spline functions of class C2, meanwhile in [7] we

discretize in a finite element space where in case that its functions are bicubics they turns

out to be of class C1. The resulting function is called a fairness bicubic spline.
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Some fields of applications of this problem can appear in Earth sciences, specially in

Geology and Geophysics, as long as CAD and CAGD etc ...

The remainder of this paper is organised as follows. In Section 2, we briefly recall some

preliminary notations and results. Section 3 is devoted to state the approximation problem

and to present a method to solve it. In Section 4, we compute the resulting function, while

a convergence’s Theorem is proved in Section 5. In Section 6 some numerical and graphical

examples are given.

2 Notations and preliminaries

We denote by 〈 · 〉 and 〈 · , · 〉, respectively, the Euclidean norm and inner product in

R
r, for r ≥ 2. For two real intervals (a, b) and (c, d), with a < b and c < d, we consider

the rectangle R = [a, b] × [c, d] and, for any s ∈ N, let Hs(R) be the usual Sobolev space

of (classes of) functions u belong to L2(R), together with all their partial derivatives Dβu

with β = (β1, β2) ∈ N
2, in the distribution sense, of order |β| = β1 + β2 ≤ s. This space

is equipped with the norm

‖u‖s =





∑

|β|≤s

∫

R

Dβu(x)2dx





1/2

,

the semi–norms

|u|` =





∑

|β|=`

∫

R

Dβu(x)2dx





1/2

, 0 ≤ ` ≤ s,

and the corresponding inner semi–products

(u, v)` =
∑

|β|=`

∫

R

Dβu(x)Dβv(x)dx, 0 ≤ ` ≤ s.

Given R ⊂ R
2 we will denote by Pr(R) the restriction to R of the linear space of real

polynomials of degree ≤ r.

Moreover, for any n, m ∈ N
∗ let Tn = {x0, ..., xn}, Tm = {y0, ..., ym} be some subsets

of distinct points of [a, b] and [c, d], with a = x0 ≤ x1 < · · · < xn−1 ≤ xn = b and

c = y0 ≤ y1 < · · · < ym−1 ≤ ym = d. We denote by S3(Tn) and S3(Tm) the spaces of cubic

spline functions given by

S3(Tn) =
{

s ∈ C2[a, b] | s|[xi−1,xi] ∈ P3[xi−1, xi], i = 1, ..., n
}

and

S3(Tm) =
{

s ∈ C2[a, b] | s|[yj−1,yj ] ∈ P3[yj−1, yj], j = 1, ..., m
}

.

Let {ϕ1, . . . , ϕn+3} and {ψ1, . . . , ψm+3} be respectively the B-spline basis of S3(Tn)

and S3(Tm). We consider the space S3(Tn, Tm) of bicubic spline functions given by

S3(Tn, Tm) = span{ϕi(x)ψj(y) | 1 ≤ i ≤ n + 3, 1 ≤ j ≤ m+ 3}.
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Finally, we have that S3(Tn, Tm) is a Hilbert subspace of H3(R) equipped with the

same norm, semi–norm and inner semi–product of such space and, moreover, that verifies

S3(Tn, Tm) ⊂ H3(R) ∩ C2(R). (1)

3 Fairness bicubic spline

Let Υ0 ⊂ R
3 be a explicit surface defined by a function f belonging to C2(R). For each

r ∈ N
∗ let Ar = {a1, . . . , ar} be a subset of distinct points of R such that

sup
p∈R

min
i=1,...,r

〈p− ai〉 = o

(

1

r

)

, r → +∞. (2)

Let Lr be the operator defined from H3(R) into R
r by Lrv = (v(a1), . . . , v(ar))

T and

suppose that

KerLr ∩ P2(R) = {0}. (3)

Now, we consider the following problem: Find an approximating explicit surface Υ of

Υ0 defined by a function σ of S3(Tn, Tm) that fits the data points {f(ai), i = 1, . . . , r}

and minimises all the semi-norms of order less than 3 in S3(Tn, Tm).

For any τ = (τ1, τ2, τ3) ∈ R
3 with τ1, τ2 belonging to R+ and τ3 > 0, let Jr

τ be the

functional defined on H3(R) by

Jr
τ (v) = 〈Lr(v − f)〉2 +

3
∑

j=1

τj |v|
2
j ·

Remark 3.1 The first term of J r
τ (v) indicates how well v approaches f in a discrete

least discrete squares sense. The second term can represent some different conditions as

for example: fairness conditions (see [4] and [5]), a classical smoothness measure, etc.,

while the parameter vector τ weights the importance given to each condition. �

Then, for any r ≥ 3 we consider the following minimisation problem: Find σN,r
τ such

that
{

σN,r
τ ∈ S3(Tn, Tm),

∀v ∈ S3(Tn, Tm), Jr
τ (σN,r

τ ) ≤ Jr
τ (v).

(4)

Theorem 3.1 The problem (4) has a unique solution, called the fairness bicubic spline

in S3(Tn, Tm) relative to Ar, Lr and τ , which is also the unique solution of the following

variational problem: Find σN,r
τ such that











σN,r
τ ∈ S3(Tn, Tm),

∀v ∈ S3(Tn, Tm),
〈

LrσN,r
τ , Lrv

〉

r
+

3
∑

j=1

τj(σ
N,r
τ , v)j = 〈Lrf, Lrv〉r ·
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4 Computation

Now well, we are going to show how to obtain in practice any fairness bicubic spline but

we assume that we know the parameter values associated to given data points. Therefore,

the set σN,r
τ (R), for N, r ∈ N

∗ and a given value of the parameter vector τ , provides a

solution for Problem (4).

For any n, m ∈ N
∗ we consider N = (n + 3)(m + 3) and {v1, . . . , vN} a basis of the

space S3(Tn, Tm). Thus, σN,r
τ can be written as σN,r

τ =
N
∑

i=1

αi vi, with αi ∈ R unknown,

for i = 1, . . . , N . Applying Theorem 3.1 we obtain a linear system of order N as follows

N
∑

i=1

αi

(

〈Lrvi, L
rvj〉 +

3
∑

s=1

τs(vi, vj)s

)

= 〈Lrf, Lrvj〉 , ∀j = 1, . . . , N,

that is equivalent to

C α = b (5)

with C = (cij)1≤i,j≤N , α = (α1, . . . , αN)T and b = (b1, . . . , bN )T , where for i, j = 1, . . . , N

one has










cij = 〈Lrvi, L
rvj〉 +

3
∑

s=1

τs (vi, vj)s ,

bj = 〈Lrf, Lrvj〉 .

Finally, we point out that the matrix C is symmetric, positive definite and of band

type. In practice we use the following notations:

A = (Lrvi)1≤i≤N ,

Bs = ((vi, vj)s)1≤i,j≤N , s = 1, 2, 3,

hence the system (5) is equivalent to

(ATA+ τ1B1 + τ2B2 + τ3B3)α = ATLrf.

5 Convergence

Under adequate conditions, we are going to prove that the fairness bicubic spline σN,r
τ in

S3(Tn, Tm) relative to Ar, Lrf and τ , converges to f when N and r tend to +∞.

Theorem 5.1 Suppose that the hypotheses (1) and (2) hold and that

τ3 = o
(

r2
)

, r → +∞, (6)

∀ i = 1, 2, τi = o(τ3), r → +∞, (7)
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and
r h8

τ3
= o(1), r → +∞. (8)

Then, one has

lim
N,r→+∞

∥

∥f − σN,r
τ

∥

∥ = 0.

Proof The scheme of the proof is the following.

Step 1. We obtain that

∃C > 0, ∃λ > 0, ∀ r ≥ λ, ‖σN,r
τ ‖3 ≤ C,

which means that the family
(

σN,r
τ

)

r,N∈N∗
is bounded in S3(Tn, Tm). It follows that there

exists one sub-sequence
(

σNl,rl
τl

)

l∈N
, with τl = τ(rl), lim

l→+∞
rl = +∞, lim

l→+∞
Nl = +∞ and

one element f ∗ ∈ H3(R) such that

σNl,rl
τl

converges weakly to f ∗ in H3(R). (9)

Step 2. Let us now prove that f ∗ = f . We suppose that f ∗ 6= f . From the continuous

injection of H3(R) into C(R) it follows that there exists θ > 0 and an open rectangle R0

of R such that

∀p ∈ R0, |f
∗(p) − f(p)| > θ.

As such injection is also compact then from (9) we obtain

∃l0 ∈ N, ∀l ≥ l0, ∀p ∈ R0, |σ
Nl,rl
τl

(p) − f ∗(p)| ≤
θ

2
·

Hence, for all l ≥ l0 and all p ∈ R0 we have

|σNl,rl
τl

(p) − f(p)| ≥ |f ∗(p) − f(p)| − |σNl,rl
τl

(p) − f ∗(p)| >
θ

2
· (10)

Now well, for l sufficiently great and using (2) we deduce that there exists a point

arl ∈ Ar ∩ R0 such that

|σNl,rl
τl

(arl) − f(arl)| = o(1), l → +∞,

which is a contradiction with (10). Consequently f ∗ = f .

Step 3. As H3(R) is compactly injected in H2(R), using (9) and taking into account that

f ∗ = f we have f = lim
l→+∞

σNl,rl
τl

in H2(R). Then

lim
l→+∞

((σNl,rl
τl

, f))2 = ‖f‖2
2 . (11)

Using again (9) and that f ∗ = f we obtain

lim
l→+∞

(σNl,rl
τl

, f)3 = lim
l→+∞

(

((σNl,rl
τl

, f))3 − ((σNl,rl
τl

, f))2

)

= |f |23 . (12)

Moreover, for all l ∈ N we have
∣

∣σNl,rl
τl

− f
∣

∣

2

3
=
∣

∣σNl,rl
τl

− f
∣

∣

2

3
+ |f |23 − 2(σNl,rl

τl
, f)3

we deduce from (12) and (11) that lim
l→+∞

∥

∥σNl,rl
τl

− f
∥

∥

3
= 0.

Step 4. Finally, reasoning by contradiction we prove that the result is true. �

365



6 Numerical and graphical examples

We consider the explicit surface Υ0 defined in the rectangle R = [0, 1] × [0, 1] by the

following function

f(x, y) = cos[6π
(

(x− 0.5)2 + (y − 0.5)2
)

]
(

1 + (x− 0.5)2 + (y − 0.5)2
)

.

The graph of this function appears in Figure 1.
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Figure 1: Original surface Υ1

By using our smoothness method we have computed an approximating surface Υ of

Υ0 defined by a fairness bicubic spline σN,r
τ from some scattered data points. The space

of bicubic spline functions of class C2 has been constructed by one partition of 7×7 equal

rectangles which means that we have taken n = m = 7 so dimS3(Tn, Tm) = 100 that is

the order of the linear system given in (5).

Likewise, for any τ ∈ R
3
+, τ3 > 0, we have computed the following estimation of the

relative error Er given by

Er =









10000
∑

i=1

|σN,r
τ (ai) − f(ai)|

2

10000
∑

i=1

|f(ai)|2









1/2

where a1, . . . , a10000 are random points in R.

Now, we are going to show graphically the importance of the parameter vector τ .

Figures 2 and 3 show the weight of the parameter vector τ in the approximating surface

in agreement with the interpretation given in Remark 3.1 and so the effectiveness of this

approximation method.
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Figure 2: Two approximating surfaces parameterised by the Fairness bicubic spline σN,r
τ

for respectively r = 450, τ = {10−1, 10−1, 10−3}, Er = 0.542214 and r = 450, τ =

{10−2, 10−2, 10−4}, Er = 0.300362.
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277–286.

[5] A. Kouibia, M. Pasadas and J. J. Torrens, Fairness Approximation by Modified

Discrete Smoothing Dm–splines, In Mathematical Methods for Curves and Surfaces

II, M. Daehlen, T. Lyche and L. L. Schumaker (eds.), by Vanderbilt University Press,

Nashville, (1998) 295–302.

367



0

0.25

0.5

0.75

1 0

0.25

0.5

0.75

1

-2

-1

0

1

0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

1 0

0.25

0.5

0.75

1

-1

0

1

0

0.25

0.5

0.75

1

Figure 3: Original surface Υ1 and an approximating surface parameterised by the Fairness

bicubic spline σN,r
τ for respectively r = 750, τ = {10−3, 10−3, 10−7}, Er = 0.0759871 and

r = 1000, τ = {10−7, 10−7, 10−10}, Er = 0.0277037.

[6] A. Kouibia and M. Pasadas, Smoothing Variational Splines, Applied Math. Letter

vol. 13 (2000) 71–75.

[7] A. Kouibia and M. Pasadas, Discrete Smoothing Variational Splines, Journal of Com-

put. and Applied Math., 115 (2000) 369–382.

[8] P. M. Prenter, Splines and Variational Methods, A Wiley-Interscience Publication,

New York (1989).

368


