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Abstract

For any given natural exponential family (NEF), the existence is proven for the

uniformly minimum variance and unbiased (UMVU) estimator of the generalized

variance, i.e. the determinant of the covariance matrix. This result provides a uni-

fication and a general extension of those appearing in recent literature. In order to

compare the UMVU estimator with an unbiased maximum likelihood (ML) estima-

tor, the necessary and sufficient condition will be given. Finally, a characterization

of the Poisson-Gaussian laws in Rd will be given.
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1 Introduction

The problem of estimating the determinant of a covariance matrix, referred to as the

generalized variance, has received much attention in literature (e.g., Shorrock and Zidek,

1976; Gupta and Ofori-Nyarko, 1995). Let Mn(X) = (X1, · · · ,Xn) be a d × n random

matrix with i.i.d. columns to the random vector X such that m = E(X) is the mean and

Σ = Cov(X) is the covariance matrix. Assume that m is unknown and Σ is known to be

a positive definite (i.e., |Σ| > 0, where |Σ| denotes the determinant of Σ). All the usual

statistics are based on the sample generalized variance

|Sn| =

∣∣∣∣∣ 1

n− 1

n∑
i=1

(Xi −X)⊗ (Xi −X)

∣∣∣∣∣ ,
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where X = n−1
∑n

i=1 Xi is the random sample mean vector, and Xi ⊗ Xj denotes the

matrix XiX
t
j. Generally |Sn| is a biased estimator. Some of their properties are known

for X distributed as normal via Wishart distribution (e.g., Iliopoulos and Kourouklis,

1998, also for some references on the developments of this purpose) or for X distributed

as elliptic (see Iwashita and Siotani, 1994). In the literature of multivariate data analysis,

that is |Sn| which is very often used without distribution hypothesis to detect outliers (e.g.,

Rousseeuw and Van Driessen, 1999, also for some references). In addition, the maximum

likelihood (ML) estimator can be used to exploit the (asymptotical) advantages of this

method.

The present paper is devoted to the uniformly minimum variance and unbiased

(UMVU) estimator of |Σ| for X distributed as a probability P (m, F ) in a natural ex-

ponential family (NEF) F on Rd with mean m and covariance matrix Σ := VF (m),

depending on m (see Kotz et al., 2000, Chapter 54, for more details). It is indicated that

the generalized variance |VF (m)| is a measure of the variability within a population. In

general, we can use it to compare covariance matrices between themselves. Naturally, it

appears in the matrix inversion problems. But one can find it in other situations (e.g.,

Butler et al., 1992). Finally, it can be seen as the determinant of the Fisher Information

matrix.

Motivated by the partial results of the literature (e.g., Kokonendji and Seshadri (1996)

for n = d+ 1; Pommeret (1998) for the class of simple quadratic NEFs of Casalis (1996);

Kokonendji and Pommeret (2001a) for infinitely divisible NEFs), the main aim of this

paper is to point out the UMVU estimator for all NEFs and for any n (> d) observations.

In Section 2 the result will be shown and connected to an unbiased ML estimator under any

necessary and sufficient condition. Finally, in Section 3, we investigate two applications:

the first provides the way to improve the Gaussian case via Wishart NEF. The second

application is a new characterization of the Poisson-Gaussian NEFs on Rd.

2 Basic Results

First, let us briefly recall the notations of NEFs. Let µ be a generating measure of

F := F (µ), and Θ(µ) defined as the non-empty interior of the domain of the Laplace

transform Lµ(θ) :=
∫

Rd exp〈θ,x〉µ(dx) of µ. We will denote by k′′µ the d×d Hessian matrix

of the cumulant function kµ(θ) := logLµ(θ) and by ψµ the inverse map of θ 7→ k′µ(θ) =: m

from Θ(µ) into MF := k′µ(Θ(µ)) referred to as the mean domain of F . The covariance

matrix of the probability measure P (m, F )(dx) := exp{〈ψµ(m),x〉 − kµ(ψµ(m))}µ(dx)

can be written VF (m) = k′′µ(ψµ(m)). Note that VF (m), defined on MF , is so-called the

variance function of F := {P (m, F ) ;m ∈ MF}. An important feature of VF is that it

characterizes the NEF F , and it presents an expression far simpler than P (m, F ).
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We now present the UMVU estimator of |VF (m)| and then compare it to the ML

estimator.

2.1 UMVU estimator

Let us first state an important preliminary result, which garantees the existence of the

UMVU estimator of the generalized variance for all NEFs.

Theorem 2.1 Let µ be a generating measure of a NEF on Rd. Then for all integer

n > d, there exists a positive measure νn on Rd verifying the three following statements:

(i) νn is the image measure of

1

(d+ 1)!

∣∣∣∣∣
[

1 1 · · · 1

x1 x2 · · · xd+1

]∣∣∣∣∣
2

µ(dx1) · · ·µ(dxd+1) · · ·µ(dxn)

by the map (x1, · · · ,xn) 7→ x1 + · · ·+ xn;

(ii) its Laplace transform is

Lνn(θ) = |k′′µ(θ)|(Lµ(θ))n (1)

for all θ ∈ Θ(µ);

(iii) there exists Cn : Rd → R such that

νn(dx) = Cn(x)µ∗n(dx). (2)

For the proof we can refer to Kokonendji and Pommeret (2001b).

Note that, first, νn is invariant by the choice of the first d + 1 components among n.

Second, if µ is an infinitely divisible measure then there exists a positive measure ρ(µ) on

Rd such that |k′′µ(θ)| = Lρ(µ)(θ) for all θ ∈ Θ(µ) (see Hassairi, 1999; Theorem 2.1), and,

hence, we have the following interpretation: νn = ρ(µ) ∗ µ∗n. This observation was at the

origin of the Kokonendji and Pommeret (2001a) Note.

We can now show the main result of this paper, which has no restriction either for the

sample size n > d or for a kind of NEF.

Theorem 2.2 Let F = F (µ) be a NEF on Rd generated by µ and let X1, · · · ,Xn be

n-random variables i.i.d. as P (m, F ) ∈ F . Then for all n ≥ d+ 1, the UMVU estimator

of the generalized variance |VF (m)| is

Tn = Cn(nX), (3)

where Cn is defined in (2) of Theorem 2.1 and X = n−1
∑n

i=1 Xi.

Proof: By Rao-Blackwell theorem (e.g., Lehmann and Casella, 1998, page 47) it suffices

to observe the following fact. From Theorem 2.1 we have, for each m =k
′
µ(θ) ∈MF ,

|VF (m)| = |k′′µ(θ)| = Lνn(θ)/Lµ∗n(θ) = Eθ(m)(Cn(nX))
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=

∫
(Rd)n

Cn(y1 + · · ·+ yn)P (m, F )(dy1) · · ·P (m, F )(dyn).

Comment. Theorem 2.2 is a unification and extension of results in Kokonendji and Pom-

meret (2001a; Theorem 2), Kokonendji and Seshadri (1996; Theorem 3.3), and also Pom-

meret (1998; with its real function g(m) as |VF (m)|). Further, Theorem 2.1 garantees

the existence of Cn (for n ≥ d + 1), which the first two papers above do not give. For

pratical reasons, if Cn could be calculated then it is possible to consider Tn given by (3)

for the small sample sizes n ≤ d, which loses its UMVU property. See Kokonendji and

Pommeret (2001b) for more details concerning the simple quadratic NEFs in Rd of Casalis

(1996) with variance functions having the form

VF (m) = αm⊗m + B(m) + C (4)

where α ∈ R, B(m) is a (d × d) matrix of linear elements in m, and C is a (d × d)

symmetric positive matrix of constants.

Remark 1. If X1, · · · ,Xn1 and Z1, · · · ,Zn2 are two independents i.i.d. samples with

distributions P (m1, F1) ∈ F1 and P (m2, F2) ∈ F2, respectively, then the joint distribution

P (m1, F1)×P (m2, F2) belongs to the NEF F = F1×F2. Since F1 and F2 are independent,

then

|VF (m)| = |VF1(m1)||VF2(m2)|,

where m = (m1,m2). Thus the UMVU estimator of |VF (m)| is the product of the two

UMVU estimators of |VF1(m1)| and |VF2(m2)| respectively.

Remark 2. The asymptotic efficiency of Tn can be obtained by using some results of

Portnoy (1977), restricted to lattice and infinitely divisible distributions.

2.2 Comparing UMVU and ML estimators

Let X1, · · · ,Xn be n-random variables i.i.d. as P (m, F ) ∈ F (µ). Then it is easily seen that

the ML estimator of the generalized variance |VF (m)| is |VF (X)| and generally biased.

By completeness, there can be only one unbiased estimator function of X. Thus, the

comparison (between UMVU and ML estimators) should be based on the mean squared

error as risk; one of which is more complicated in this general situation. However, through

the construction of the UMVU estimator (3), we have the following result.

Theorem 2.3 Let X1, · · · ,Xn be n-random variables i.i.d. as P (m, F ) ∈ F (µ),

X = n−1
∑n

i=1 Xi, and Cn as defined in (2) of Theorem 2.1. Then there exists (a,b, c) ∈
R× Rd × R such that

|k′′µ(θ)| = exp{akµ(θ) + 〈b, θ〉+ c} (5)
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for all θ ∈ Θ(µ) if and only if there exists λn > 0 such that

Cn(X1 + · · ·+ Xn) = λn|VF (X)|. (6)

Comment. The condition (5) has already appeared in Gutiérrez-Peña and Smith (1995)

related to the equality of two conjugate prior distribution families of a NEF F (µ). Also,

it is satisfied for all homogeneous and simple quadratic NEFs (Casalis, 1991, 1996), but

it does not provide their characterization for d > 1.

As for one part of the proof, we can just observe the following fact.

Proposition 2.4 Let F = F (µ) be a NEF generated by µ satisfying (5). Let νn be

defined from µ as in Theorem 2.1. Then F (νn) and F (µ) are of the same type (i.e., up to

affinity and power). More precisely, one has νn = (exp c)A∗µ
∗(n+a) where A : x 7→ x + b.

Proof: From (1) of Theorem 2.1 and (5) of Theorem 2.3 we have

kνn(θ) = (n+ a)kµ(θ) + 〈θ,b〉+ c.

Letting m = k′νn
(θ), m = k′µ(θ) and an = n+ a, we have m = anm + b and VF (νn)(m) =

anVF ((m − b)/an). This shows that F (νn) and F (µ) are of the same type, because m

and m are linked by an affinity transformation.

3 Applications

We now present two applications of the previous results.

3.1 Wishart and Gaussian families

Since in the Gaussian NEF the variance Σ does not depend on the mean m, we need a

good estimator of Σ in the Wishart family.

Let E be the space of (r×r) real symmetric matrices and S be the cone in E of positive

definite matrices. Consider the standard Wishart distribution Wr(2p,Σ) concentrated on

S (closure of S) with Σ in S and p in

Λ = {1/2, 1, 3/2, · · · , (r − 1)/2}
⋃

((r − 1)/2,∞) . (7)

Then it is known that the NEF

Fp = {Wr(2p,Σ); Σ ∈ S} (8)

has a homogeneous quadratic variance (Letac, 1989a; Casalis, 1991).

The key to the UMVU estimator of the generalized variance in the Wishart NEF is

provided by the following result, without proof here.
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Proposition 3.1 Let µ ∈ M(E) such that F (µ) = Fp with Fp given by (8) and p in

Λ given by (7). Let νn be defined from µ as in Theorem 2.1. Then F (νn) = Fpn
, where

pn = np+ r + 1 with n ≥ 1 + r(r + 1)/2; that is, F (νn) and F (µ) are of the same type.

Furthermore for

p > (r − 1)/2 and n ≥ 1 + r(r + 1)/2, (9)

the function Cn(X) = νn(dX)/µ∗n(dX) is explicitly given by

Cn(X) = 2r(r+1)pr(r+1)/2 Γr(np)

Γr(np+ r + 1)
|X|r+1 (10)

where

Γr(q) = 2rqπr(r−1)/4

r−1∏
k=0

Γ(q − k/2). (11)

Now, our estimator Tn = Cn(X1 + · · · + Xn) is the best, concerning UMVU, to esti-

mate the generalized variance |k′′µp
(θ(Σ))| = 2r(r+1)pr(r+1)/2|Σ|r+1 in the Wishart family

Wr(2p,Σ) for any n ≥ 1 + r(r + 1)/2, where Cn is given by (10).

The direct calculation of V arθ(Σ)(Tn), using (10) and

Eθ(|X1 + · · ·+ Xn|q) =
Γr(q + np)

Γr(np)
| − 2θ|−q

(see Muirhead, 1982; page 101) for all sample size n, where X1, · · · ,Xn are i.i.d. random

variables with Wishart distribution Wr(2p,Σ) with θ = −Σ−1/2, shows that

V arΣ(Tn) = 22r(r+1)pr(r+1)|Σ|2(r+1)

[
Γr(np)Γr(np+ 2r + 2)

Γ2
r(np+ r + 1)

− 1

]
,

where Γr is defined in (11). Thus, the following remark could improve some properties

of the generalized variance in the Gaussian case, for which both mean m and variance Σ

are unknown.

Remark 3. The traditional notation of the Wishart distribution generated by n indepen-

dent centred Gaussian variables with covariance matrix Σ
′
is Wr(n,Σ

′), where r is the

dimension of Σ
′
. The correspondence between this notation and the one Wr(2p,Σ) we

adopt in this paper is immediate: p = n/2 and Σ = 2Σ′.

3.2 Characterization of Poisson-Gaussian Laws in Rd

Let X ∈ Rd be a Poisson-Gaussian (PG)k=0,1,...,d vector such that the first k (in

{0, 1, . . . , d}) components have Poisson distributions independent to the d − k compo-

nents which are Gaussian distributions (see Casalis, 1996). The corresponding generating

measure µ of this type is

µ(dx) =

∑
j∈Nk

δj(dx1, · · · , dxk)

j!

 exp
{
−

∑d
i=k+1 x

2
i /2

}
(2π)(d−k)/2

(dxk+1, · · · , dxd),
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where δj is the Dirac mass at j, kµ(θ) =
∑k

i=1 e
θi +

∑d
i=k+1(θ

2
i /2), |k′′

µ(θ)| = exp(θ1 + · · ·+
θk), Θ(µ) = Rd and VF (m) = diag(m1, · · · ,mk, 1, · · · , 1) on MF = (0,∞)k × Rd−k.

By symmetry conditions on variance functions, Letac (1989b) described that all NEFs

with variance function as the form (4) where α = 0 are of the type (PG)k=0,1,...,d. The new

characterization of the Poisson-Gaussian NEFs on Rd is given by the following theorem

and its interpretation is from Theorem 2.1 (i) and Proposition 2.4 for all interger n > d.

Theorem 3.2 Let µ be a generating measure of a NEF on Rd. Then µ generates one

of the d+ 1 types of (PG)k=0,1,...,d if and only if a = 0 in (5).

Comments. (i) For k = 0 and hence (a = 0,b = 0) in (5), we obtain here a new

interpretation for the Gaussian distribution given in Kokonendji and Seshadri (1996)

only for n = d+ 1. Note also that for k ∈ {1, · · · , d}, we have λn = 1 in (6).

(ii) The set of NEFs generating by µ satisfying (5) is neither only the simple quadratic

NEFs, nor the quadratic ones; it is an open problem for a 6= 0 with d > 1.

(iii) The “if” part of Theorem 3.2 is established. For the “only if” part of the proof,

first take the complex result of Pogorelov (1978; page 90) reformulated as follows:

Lemma 3.3 Let f be a C∞ convex function on Rd such that the determinant of the

Hessian matrix f
′′
is a constant. Then f

′′
itself is a constant.

Then apply Lemma 3.3 to f so that |f ′′
(θ)| = | exp{−〈b, θ〉/d}k′′

µ(θ)|.
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