
ESDIRK methods for index-2 DAE:

starting algorithms

Inmaculada Higueras and T. Roldán

Departamento de Matemática e Informática, Universidad Pública de Navarra

higueras@unavarra.es, teo@unavarra.es

Monograf́ıas del Semin. Matem. Garćıa de Galdeano. 27: 345–352, (2003).

Abstract

When semi-explicit differential-algebraic equations are solved with implicit Run-

ge-Kutta methods, the computational effort is dominated by the cost of solving the

non-linear systems and therefore it is important to have good starting values to begin

the iterations. In this paper we show how to construct an efficient starting algorithm,

without additional computational cost, for a class of Runge-Kutta methods in the

case of index-2 DAEs.

Keywords: Starting algorithms, differential-algebraic equations, ESDIRK methods

AMS Classification: 65L05, 65L06, 65L80, 65H10.

1 Introduction.

We consider semi-explicit index-2 differential algebraic systems of the form

{

y′ = f(y, z) y(x0) = y0

0 = g(y) z(x0) = z0 ,
(1)

where f : R
l × R

m −→ R
l and g : R

l −→ R
m are sufficiently smooth functions, and

the matrix gyfz is invertible in a neighbourhood of the solution of (1). Furthermore, we

assume that the initial values are consistent, i. e., they satisfy the algebraic equation

g(y0) = 0 and the hidden constrain gy(y0)f(y0, z0) = 0.

If we consider an s-stage Runge-Kutta method (A, b) to solve (1), a standard as-

sumption is the matrix A to be regular. However we can also use methods with singular

matrices of the form
0 0 0t

c̄ a Ā

b1 b̄t

(2)

345

where a ∈ R
s−1 and Ā is an (s − 1) × (s − 1) regular matrix [6]. In particular ESDIRK

(Explicit Single Implicit RK) methods belong to this class. On these methods we assume

that conditions C(1) and B(1) hold, i.e.

a + Āē = c̄ b1 + b̄tē = 1 (3)

where ē = (1, . . . , 1)t ∈ R
s−1, and that R(∞) is bounded, with R(z) the stability function

of the method, i.e. we impose

b1 − b̄tĀ−1a = 0 . (4)

In this way (3) imply

b̄tĀ−1c̄ = 1 .

For these methods, the first internal stages are Yn+1,1 = yn, Zn+1,1 = zn, and the rest of

the stages are given by the non-linear system

Ȳn+1 = ē ⊗ yn + h a ⊗ f(yn, zn) + h(Ā ⊗ Il)f(Ȳn+1, Z̄n+1) , (5)

0 = g(Ȳn+1) . (6)

We have denoted Ȳn+1 = (Y t
n+1,2, . . . , Y

t
n+1,s)

t ∈ R
l(s−1), Z̄n+1 = (Zt

n+1,2, . . . , Z
t
n+1,s)

t ∈
R

m(s−1) ; f(Ȳn+1, Z̄n+1) ∈ R
l(s−1) is the vector [f(Yn+1,2, Zn+1,2)

t, . . . , f(Yn+1,s, Zn+1,s)
t]t

and in an analogous way for g(Ȳn+1) . The symbol ⊗ denotes the Kronecker product.

As the matrix Ā is regular, system (5)-(6) can be solved for Ȳn+1 and Z̄n+1. Once

these values have been computed, with condition (4), we obtain

yn+1 = R(∞)yn + (b̄tĀ−1 ⊗ Il) Ȳn+1 ,

and similarly we can compute

zn+1 = R(∞)zn + (b̄tĀ−1 ⊗ Im) Z̄n+1 .

If the method is stiffly accurate, i.e. asi = bi, i = 1, . . . , s, we simply obtain

yn+1 = Ȳn+1,s zn+1 = Z̄n+1,s .

Observe that in this case the numerical solution satisfies g(yn+1) = 0. If the method is not

stiffly accurate, the numerical solution must be projected onto the constraint g(y) = 0 (see

[1], [6]). Examples of stiffly accurate methods of the form (2) are Lobatto IIIA methods

and SDIRK methods considered in [2] and [9].

In each step, we have to obtain the internal stage vectors Ȳn+1 and Z̄n+1 through the

resolution of the non-linear system (5)-(6). In the iterative scheme to solve the nonlinear

system, we need starting values (Ȳ
(0)
n+1, Z̄

(0)
n+1) as accurate as possible, because in other case,

346

the number of iterations in each step may be too high or even worse, the convergence may

fail.

In [7] and [8] a type of initializers for index-1 DAEs was studied, and in [5], [7] they were

extended to the case of index-2 and index-3 DAEs. For the index-1 case, the coefficient

matrix A is not assumed to be regular and thus the study made covers methods of the

type (2). For example in [7], [8], the coefficients of the starting algorithms for the Lobatto

IIIA methods with two and three stages were given. For index-2 and index-3 DAEs, the

order conditions given in [5], [7] involve the inverse of A and consequently those results

are not longer valid.

In this paper we study initializers to obtain starting values for the internal stages when

methods of the form (2) are used. In each step these starting values will be obtained using

the information from the previous step. We are going to assume that we have just given

a step xn−1
h−→ xn from the consistent initial values (yn−1, zn−1), we have calculated the

numerical solution (yn, zn) at xn, as well as the internal stages (Ȳn, Z̄n), and we are about

to give another step xn
rh−→ xn+1 to compute the numerical solution (yn+1, zn+1). To

achieve this, we have to solve the non-linear system (5)-(6) but now with step hr instead

of h in order to consider the most general case of variable step.

The rest of the paper is organized as follows. Section 2 begins with a review of the work

done in [5], [7] for index-2 DAEs. In previous papers ([3], [5], [8]) it has been proved that

the use of a high order starting algorithm improves the implementation of the method.

The results obtained in [5], [7] are transferred to (2) embedding this method into one with

regular coefficient matrix. Finally in Section 4 we test the algorithm proposed in some

numerical experiments.

2 Starting algorithms

Given an s-stages Runge-Kutta method (A, b) with A regular, the starting algorithms

considered in [5] are of the form

Y
(0)
n+1 = b0 ⊗ yn−1 + (B ⊗ Il)Yn , (7)

Z
(0)
n+1 = c0 ⊗ zn−1 + (C ⊗ Im)Zn , (8)

where b0, c0 ∈ R
s, and B and C are s × s matrices which have to be determined.

We say that the starting formula (7)-(8) has order (ry, rz) if these are the largest

integers which satisfy

||Y (0)
n+1 − Yn+1|| = O(hry+1) , ||Z(0)

n+1 − Zn+1|| = O(hrz+1) .

347

The vectors b0, c0 and the matrices B, C are determined so that these algorithms

achieve the maximum possible order in each variable. To obtain this, we need the series

both for the initializers (Y
(0)
n+1, Z

(0)
n+1) and for the internal stages (Yn+1, Zn+1). With the help

of rooted trees, in [5] these series in powers of h are given in terms of certain functions

Φy(t), Φz(u), Φ̄y(t), Φ̄z(t), which are defined recursively. Comparing these series, it is

possible to determine the order conditions for the starting algorithm. In particular, in

[5] it is proved that (7) reaches order ry for the differential variable if this is the largest

integer which satisfies

b0 + Be = e , (9)

BΦy(t) = Φ̄y(t) ∀t ∈ DAT2y with 1 ≤ ρ(t) ≤ ry , (10)

and (8) reaches order rz for the algebraic variable if this is the largest integer which

satisfies

c0 + Ce = e , (11)

CΦz(u) = Φ̄z(u) ∀u ∈ DAT2z with 1 ≤ ρ(u) ≤ rz . (12)

Recall that the study done in [5] is valid only for regular matrices A and thus it is not

directly applicable to the methods considered in this paper (2). In order to make use of

those results, we embed the method (2) into the ε-method

ε ε 0t

c̄ a Ā
b1 b̄t

=
cε Aε

bt
.

If ε 6= 0, the coefficient matrix is regular and thus we can try to apply the results in [5],

[7].

The internal stages Yn,ε, Zn,ε for this numerical method converge to (yn−1, Ȳn) and

(zn−1, Z̄n) when ε tends to zero. The idea is to construct starting algorithms like (7-8)

for the ε-method, and take the limit when ε tends to zero.

The starting algorithm for the ε-method will be constructed imposing the order con-

ditions obtained in [5], i.e.

b0 + Be = e , (13)

BΦy,ε(t) = Φ̄y,ε(t) ∀t ∈ DAT2y with 1 ≤ ρ(t) ≤ ry , (14)

for the differential variable and

c0 + Ce = e , (15)

CΦz,ε(u) = Φ̄z,ε(u) ∀u ∈ DAT2z with 1 ≤ ρ(u) ≤ rz . (16)

348

for the algebraic one. The expressions involved in the order conditions (14)-(16), namely

Φy,ε, Φz,ε, Φ̄y,ε and Φ̄z,ε, are bounded when ε tends to zero. Recall that the matrix A−1
ε ,

A−1
ε =

(

ε 0

a Ā

)−1

=

1
ε

0

−1
ε
Ā−1a Ā−1

 ,

which contains the term 1/ε, is involved in the definition of these functions. For example,

for the tree uq+1,1 = , the function Φ̄z,ε(uq+1,1) is given by

Φ̄z,ε(uq+1,1) =
1

q + 2

1

r
A−1

ε [−ebtA−1
ε cq+2

ε + (e + rcε)
q+2]

The important point is to observe that we do not have to deal with A−1
ε but with this

matrix multiplied by certain vectors. For example, for the tree uq+1,1 with q = 1, the

expression that must be bounded when ε tends to zero is

A−1
ε c2

ε =

ε

−εĀ−1a + Ā−1c̄2

 .

In [4] a detailed study on the boundedness of the functions Φε and Φ̄ε is done.

3 Example

In this section we show how to constuct a starting algorithms for a concrete method. This

process can be easily done with a symbolic manipulator like Mathematica.

We consider the stiffly accurate methods considered in [9] satisfying B(3) and C(2),

0 0 0 0 0

2λ λ λ 0 0

c3
6c3λ − 4λ2 − c2

3

4λ

c3u1

4λ
λ 0

1
12u2λ

2 + 6u3λ − u3

12c3λ

6λu2 + u3

12λu1

6λ2 − 6λ + 1

3c3u1
λ

(17)

where

u1 = c3 − 2 λ u2 = 1 − c3 , u3 = 3c3 − 2 ,

and c3 6= 0, 2λ. With

c3 =
2λ(λ − 1/4)(λ − 1)

(λ − 1/2)2 − 1/12

the method has order 3 for the differential variable and 2 for the algebraic one for index-2

DAEs. For λ ≈ 0.43586652, the method is L-stable.

349

The order conditions up to 3 for the differential variable are

Be = e − b0 , Bc = e + rc ,

Bc2 = (e + rc)2 , Bc3 = (e + rc)3 ,

BA c2 = ebtc2 + rA(e + rc)2 .

whereas the order conditions up to order 2 for the differential variable are

Ce = e − c0 , Cc = e + rc ,

Cc2 = (e + rc)2 , CA−1c3 = 1
r
A−1[−ebtA−1c3 + (e + rc)3] .

For the differential variable, from the conditions

Bεe = e − b0 ,

Bεcε = e + rcε ,

Bεc
2
ε = (e + rcε)

2 ,

we obtain a family of predictors with order 2. Imposing one of the two conditions of order

3 we can obtain a unique predictor

Bε = V̄ε V −1
ε

where Vε = (e, cε, c
2
ε, c

3
ε) and V̄ε = (e, e+ rcε, (e+ rcε)

2, (e+ rcε)
3) . Taking the limit when

ε tends to zero, we get

B = lim
ε→0

Bε =

0 0 0 1

b21(r) b22(r) b23(r) b24(r)

b31(r) b32(r) b33(r) b34(r)

b41(r) b42(r) b43(r) b44(r)

. (18)

where the bij(r) are polynomials of degree three.

For the algebraic variable, up to order 2, the four order conditions can be written as

CεWε = W̄ε ,

where Wε = (e, cε, c
2
ε,Aε

−1c3
ε) and

W̄ε = (e, e + rcε, (e + rcε)
2,

1

r
Aε

−1[−ebtAε
−1c3

ε + (e + rcε)
3]) .

The matrix Wε is regular if and only if α = lim
ε→0

et
4V

−1
ε Aε

−1c3
ε 6= 0 , where e4 = (0, 0, 0, 1)t.

For the method considered α ≈ −46.48, and thus there exists a unique predictor of order 2.

The matrix C = lim Cε is given by

C =

0 0 0 1

0.0015r + 0.7450r
2 −3.7551r−2.7551r

2 2.5463(r + r
2) 1 + 1.2072r − 0.5363r

2

0.0020r + 1.3097r
2 −4.9701(r + r

2) 3.3703r+4.3703r
2 1 + 1.5978r − 0.7098r

2

0.0018r + 1.0012r
2 −4.3076(r + r

2) 2.9210(r + r
2) 1 + 1.3848r + 0.3848r

2

(19)

350

4 Numerical experiments

For the numerical experiments we have considered the ESDIRK method (17) with the

predictor (19) for both variables. This predictor achieves order 2 for the algebraic variable

but also order 2 for the differential one. We have also considered the trivial predictor used

with this ESDIRK method in [9]. In order to test these two predictors we have considered

the following index-2 problems. We have run the codes with different steps and different

tolerances. The results have been summarized in tables 1 and 2 .

Problem 1. First we have considered a simple scalar index-2 problem
{

y′ = 2 y/z , y(0) = 1 ,

0 = y2 − 1 − sin t , z(0) = 4 ,
t ∈ [0, 1] . (20)

The exact solution is y(t) =
√

1 + sin t e−t , z(t) = 4 (1+sin t)
cos t

− 3 e−t . As we know the

exact solution, we have used the criteria

||y(tn) − yn|| < C ∗ h3 and ||z(tn) − zn|| < C ∗ h2

to stop the iterations. Remember that the ESDIRK method considered achieves order 3

for the differential variable and order 2 for the algebraic one. In Table 1, in the last two

columns, we have put the number of iterations per stage needed to achieve the tolerance

required for the predictors considered.

h steps
Trivial

predictor

Predictor

(19)

0.01 10 3.2100 1.0133

0.001 1000 3.2117 1.0013

0.0001 10000 3.2117 1.0001

Table 1: Results for problem 1

Problem 2. This problem is a mechanical system formulated in the form (1)

y′

1 = y3 , y1(0) = 1 ,

y′

2 = y4 , y2(0) = 0 ,

y′

3 = y2
3 − y1 − 2 λ y1 , y3(0) = 0 ,

y′

4 = 10 y2
4 − 20 y2 − 2 λ y2 , y4(0) = 0.3 ,

0 = y1 y3 + y2 y4 , λ(0) = λ0 ,

t ∈ [0, 0.5] (21)

The value of λ0 has been taken such that the initial conditions are consistent. In this

case, we have used the criteria ||Y (k)
n − Y

(k−1)
n || < TOL to stop the iterations, where Yn

denotes the internal stages.

As it occurred in the previous problem, we obtain better results with predictor (19) .

Observe that Newton iterations are reduced to the minimum possible value with this

351

h steps TOL
Trivial

predictor

Predictor

(19)

0.01 50 1.0E-3 3.3067 1.02667

0.001 500 1.0E-6 2.3780 1.0040

0.0001 5000 1.0E-8 2.3015 1.0004

Table 2: Results for problem 2

predictor. This reduction of the Newton iterations implies a reduction in the CPU-time,

in this case the gain is about 50%.

References

[1] Ascher, U. and L. Petzoldt: 1991, ‘Projected implicit Runge-Kutta methods for

differential-algebraic equations’. SIAM J. Numer. Anal. 28, 1097–1120.

[2] Cameron, F.: 1999, ‘A class of low order DIRK methods for a class of DAEs’. Applied

Numerical Mathematics 31, 1–16.

[3] Higueras, I. and T. Roldán: 2000, ‘Starting algorithms for some DIRK methods’.

Numerical Algorithms 23, 357–369.

[4] Higueras I. and T. Roldán: 2001 ‘Starting algorithms for a class of RK methods for

index-2 DAE’. Preprint, Universidad Pública de Navarra, n. 4, 2001.

[5] Higueras, I. and T. Roldán: 2003, ‘IRK Methods for index 2 and 3 DAEs: Starting

algorithms’. BIT 43-1, 65–90.

[6] Jay, L.: 1993, ‘Convergence of a class of Runge-Kutta methods for differential-

algebraic systems of index 2’. BIT 33, 137–150.

[7] Roldán, T.: 2000, ‘Implicit Runge-Kutta methods for DAEs: starting algorithms’.

Ph.D. thesis, Departamento de Matemática e Informática, Universidad Pública de

Navarra, Spain.

[8] Roldán, T. and I. Higueras: 1999, ‘IRK methods for DAE: Starting algorithms’. J.

Comput. Appl. Math. 111, 77–92.

[9] Williams, R., K. Burrage, I. Cameron, and M. Kerr: 1999, ‘A Four-Stage Index 2

Diagonally Implicit Runge-Kutta Method’. Applied Numerical Mathematics 40-3,

415-432.

352

