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Abstract

A strong law is obtained for the process {Xn} that represents the propor-

tion of balls of each colour in a generalized Pólya urn with non-deterministic

total replacement. We prove that this process fits the Robbins-Monro scheme of

stochastic approximation and, by means of the ODE method, we obtain its a.s.

limit.
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1 Introduction

Let us consider an urn that initially contains T0 > 0 balls of two colours, for example

black and white. The replacement policy consists in drawing one ball from the urn,

putting it back into the urn and, if the ball is white, adding a white balls and b black

balls and, otherwise, c white balls and d black balls. In the probabilistic literature it

is usual to assume that

a + b = c + d = s, (1)

so that the total number of balls in each stage, {Tn}n≥0, is a deterministic process

Tn = T0 + ns, for all n ≥ 0.

Let {Xn} be the bidimensional stochastic process that represents the proportion of

balls of each colour in the urn at stage n. This process evolves in the 1-simplex

∆1 = {x = (x1, x2) ∈ R2 : x1 + x2 = 1, x1 ≥ 0, x2 ≥ 0}.

The asymptotic behaviour of this process is well-known (see, [4], [5]) and some

generalizations have been studied taking advantage of the deterministic behaviour of

{Tn} (see, for example, [6], [1], [2]).
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When condition (1) is not assumed the process {Tn} is non-deterministic. This is

the case in [3], where the exact distribution of the number of balls of each colour in each

stage is obtained, but strong laws for {Xn} are not established. Our aim is to obtain

a strong law for {Xn}. In section 2 we model the urn process as a recurrence equation

and we prove that it fits the Robbins-Monro scheme of stochastic approximation. In

section 3 we apply the EDO method to obtain a.s convergence of {Xn}. Since the EDO

associated with the recurrence equation evolves in the ∆1 manifold, we can restate the

EDO as a differential algebraic equation (DAE) and apply the qualitative theory of

DAEs to solve it.

2 Recurrence equation of the urn model

Let us consider the replacement matrix

C =

(
a b

c d

)
where a, b, c, d are non-negative numbers, and b, c > 0. If we identify number 1 with

white balls and number 2 with black balls, then the element cij of C represents the

number of balls of colour j that will be added to the urn when a ball of colour i has

been extracted.

Let {An} be a bidimensional stochastic process such that, for each n, the distribu-

tion of An conditioned to Xn−1 is

An =

{
(1, 0) with probabilityX1n−1

(0, 1) with probability X2n−1

Let Sn = AnC1t, with n ≥ 1 and 1 = (1, 1). The sequence {Sn} indicates the total

number of balls added to the urn in each stage, so that

Tn = T0 +
n∑

k=1

Sk, n ≥ 1.

Now, we can describe the evolution of the process by means of the recurrence

equation

Xn+1 =
TnXn + An+1C

Tn+1

= Xn +
An+1C − Sn+1Xn

Tn+1

. (2)

The process {(Xn, An)} will be referred to as a generalized Pólya urn model (GPUM),

and we will consider the natural filtration {Fn}n≥1, where Fn = σ((Xi, Ai) 1 ≤ i ≤ n).
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Lemma 1

Let {T̃n} be a sequence such that

T̃n =
n∑

k=1

E[Sk| Fk−1].

Then,

1

n
|Tn − T̃n| → 0, a.s.

Proof. Let m = max{a + b, c + d}. Since the sequence {Sn} is uniformly bounded

by m, the lemma follows straightforward from Theorem 2.19 in [7]. �

Theorem 1

Let {(Xn, An)} be a GPUM. Then, the process {Xn} fits the recurrence equation

Xn+1 = Xn + γnYn, (3)

that satisfies the conditions

[A1] supnE|Yn|2 < ∞.

[A2] Yn = F (Xn) + εn + βn, where

[A2.1] F : R2 → R2 is a continuous function.

[A2.2] {εn} is a sequence of martingale differences relative to the σ-algebra {Fn}.
[A2.3] βn → 0, a.s.

[A3]
∑

γn = ∞,
∑

γ2
n < ∞, γn > 0, ∀n, γn → 0.

Proof. Let s = (a + b, c + d). From Lemma 1 we have

T̃n = T0 +
n∑

k=1

Xk−1s
t.

From (2), we can write

Xn+1 = Xn +
An+1C − Sn+1Xn

T̃n+1

+ (An+1C − Sn+1Xn)(
1

Tn+1

− 1

T̃n+1

).

Now, we have that

E[Xn+1| Fn]

= Xn +
1

T̃n+1

(
Xn(C −Xns

t) + E

[
(An+1C − Sn+1Xn)

(
T̃n+1

Tn+1

− 1

)
|Fn

])
.
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As

Xn+1 = E[Xn+1| Fn] + (Xn+1 − E[Xn+1| Fn]), (4)

the process {Xn} satisfies the recurrence relation

Xn+1 = Xn + γn+1(F (Xn) + εn+1 + βn+1).

where

F (Xn) := Xn(C −Xns
t),

γn+1 :=
1

T̃n+1

,

εn+1 := T̃n+1(Xn+1 − E[Xn+1 | Fn]),

βn+1 := E

[
(An+1C − Sn+1Xn)(

T̃n+1

Tn+1

− 1)|Fn

]
.

It is easy to check that conditions [A1], [A2.1], [A2.2] and [A3] hold. Thus, we

only have to focus on condition [A2.3].

We consider, for x = (x1, x2) ∈ R2, the norm ‖x‖ = |x1|+ |x2|.
Let m = max{a + b, c + d}. Then,

‖(An+1C − Sn+1Xn)‖ ≤ 2m,

and

|Xns
t − Sn+1| ≤ 2m.

Since Tn+1 = Tn+Sn+1, Sn+1 is a positive random variable and Tn is Fn-measurable,

it follows that

‖βn+1‖ ≤ E

[
‖(An+1C − Sn+1Xn)‖

∣∣∣∣∣ T̃n − Tn + Xns
t − Sn+1

Tn

∣∣∣∣∣ | Fn

]

≤ 2m

∣∣∣∣∣ T̃n − Tn

Tn

∣∣∣∣∣+ 4m2 1

Tn

As Tn > n, the second addend converges to 0, and from Lemma 1 the first one also

converges to 0. Therefore ‖βn‖ converges to 0 and the result follows. �

Remark 1 The recurrence relation (3) with conditions [A1]-[A3] is usually referred

to as the Robbins-Monro algorithm of stochastic approximation.

340



3 Almost sure convergence of the urn model

In order to obtain the a.s. convergence of the process {Xn} of a GPUM, we are going

to use the ODE method. This method relates a recurrence equation with an ODE (see

[8]). Then, under some assumptions, the asymptotic behaviour of the ODE corresponds

with that of the recurrence equation. From Theorem 5.2.1 in [8], and the remark that

follows it, we can state the following theorem.

Theorem 2

Let {Xn} be a stochastic process that fits the recurrence equation (3) and the

conditions [A1], [A2] and [A3] of Theorem 1.

If u ∈ R2 is a globally asymptotically stable point to the ODE with restrictions{
ẋ = F (x),

x ∈ ∆1

(5)

then

Xn → u, a.s.

�

Now, in order to study (5), we point out that its equilibrium points and solutions

are the same as those of the DAE

{
ẋ = F (x)− z1t

0 = 1− x1t
(6)

where x ∈ R2 and z ∈ R.

The stability of equilibrium points for DAEs depends on the spectral abscissa of a

regular matrix pencil, (A, B), where the spectral abscissa is

α(A, B) := max{Re (λ) : det (λA + B) = 0} .

Now, from Theorem 4.3 in [9], an equilibrium point of the DAE (6) is asymptotically

stable if and only if α(A, B) < 0, with

A =

(
I2 0t

0 0

)
, B =

(
−JF (u) 1t

−1 0

)
where JF is the the jacobian matrix of the function F .

We are going to apply the previous comments to our problem.

First, we calculate the equilibrium points by solving

F (x1, x2) = 0, x1 + x2 = 1 ,
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which gives

φ(x1) = (−a− b + c + d) x2
1 + (a− 2c− d) x1 + c = 0 .

We have to distinguish two cases:

i) If a + b = c + d, then there is a unique root

x1 =
c

−a + 2c + d
=

c

c + b
∈ [0, 1] ,

and thus a unique equilibrium point

(x∗1, x∗2) =

(
c

c + b
,

b

c + b

)
.

ii) If a + b 6= c + d, then there are two roots of the polynomial. As φ(0) = c > 0 and

φ(1) = −b < 0, only one of them is in [0, 1], namely

x∗1 =
−β −

√
β2 − 4αc

2α
,

where we have denoted α := −a−b+c+d, β := a−2c−d. Denoting x∗2 = 1−x∗1,

the unique equilibrium point in the 1-simplex is (x∗1, x
∗
2).

For x = (x1, x2) ∈ ∆1 we have that F (x)1t = 0. The Jacobian matrix

JF (x) =

(
a b

c d

)
−

(
a + b

c + d

)
(x1, x2)− (x1, x2)

(
a + b

c + d

)
I2

has

λ1(x1) = −c− d + (−a− b + c + d)x1 = −c− d + αx1

as eigenvalue with eigenvector 1; the other eigenvalue is

λ2(x1) = a− 2c− d + 2(−a− b + c + d)x1 = 2αx1 + β . (7)

To compute these eigenvalues we have already used that (x1, x2) ∈ ∆1. Evaluating (7)

in the equilibrium point x1 = x∗1, we obtain

λ2(x
∗
1) = −(c + b) < 0

if a + b = c + d and

λ2(x
∗
1) = −

√
β2 − 4αc < 0

otherwise.

From these results, we have established, in any case, the existence of a unique stable

point to the ODE with restrictions (5), and therefore, it is also a globally asymptotically

stable point. Now, we can apply Theorem 2 to obtain the following result.
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Theorem 3

Let {(Xn, An)} be a GPUM.

a) If a + b = c + d then Xn → (
c

c + b
,

b

c + b
), a.s.

b) If a + b 6= c + d then Xn → (u1, 1− u1), a.s.

where α := −a− b + c + d, β := a− 2c− d and

u1 =
−β −

√
β2 − 4αc

2α
.
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