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Abstract

In this paper we state a general Korovkin-type result for the study of the al-

most convergence of general shape preserving approximation processes. We use

the well-known notion of almost convergence introduced by Lorentz in 1948. Some

applications are also shown.
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1 Introduction

The classical results of Korovkin [3] and the subsequent quantitative versions of Shisha and

Mond [7], [8] on the convergence of a sequence of positive linear operators were formulated

in [2] and [5] replacing the usual convergence by almost convergence. We recall here this

notion that was introduced in 1948 by Lorentz [4]. As usual we denote by RX the set

of all real-valued functions on a set X, and by C(X) the subset of the continuous ones.

Let Hn be a sequence of linear operators defined on C(X). Given f ∈ C(X), we define

Hnf := Hn(f) to be almost convergent to g in C(X), uniformly in X, (Hnf
a.c.−→ g),

provided
1

p

v+p∑
n=v+1

Hnf(x), p, v ∈ N

converges to g(x) as p → ∞, uniformly in v and uniformly in X. Pointwise almost

convergence can be defined in an obvious way.

On the other hand, in [6] it was stated a Korovkin-type result on the convergence of

sequences of operators that possess shape preserving properties much more general than

positivity.

Our aim with this paper is to present qualitative results on almost convergence for

these conservative approximation processes that we have just mentioned and that we detail
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in the next section together with the main result of this work. The rest of the sections

are devoted to present applications of this result to the space of k-times differentiable

functions defined on a compact subinterval of R and to the space C2π of all real-valued

continuous 2π periodic functions on R.

2 A general Korovkin-type result on almost conver-

gence

In [6] it was presented an extension of the classical Korovkin theorem when non positive

operators are considered. In this section we extend this theorem for the case of almost

convergence.

Let m ∈ N, let X be a compact subset of Rm, let B ⊂ RX , let A be a subspace of

C(X) such that A ⊂ B, and let L : B → RX be a linear operator such that L(A) ⊂ C(X).

Theorem 1 Let P = {f ∈ B : Lf ≥ 0} and let C be a cone of A (i.e. if α ≥ 0 and

f, g ∈ C, then αf, f + g ∈ C). Assume that:

(v.1) there exists u ∈ A such that Lu(x) = 1 ∀x ∈ X.

(v.2) there exist ai, gi ∈ C(X), i = 1, 2, ...,m, such that for all z ∈ X, the functions

ϕz :=
m∑

i=1

ai(z)gi

belong to C, Lϕz(x) ≥ 0 for all x ∈ X and the equality is satisfied if and only if

z = x.

(v.3) for each f ∈ A, there exists α = α(f) ≥ 0 such that if β > α, then f + βϕz ∈ C.

Let Kn : A→ B be a sequence of linear operators such that

(k.1) Kn(P ∩ C) ⊂ P ,

(k.2) L(Kngi)
a.c.−→ Lgi, i = 1, . . . ,m.

Then for all f ∈ A,

L(Knf)
a.c.−→ Lf.

Proof We organize the proof by several steps in a similar way as it is done in [1, Theorem

1.3]. For g ∈ A, p, v ∈ N, we use the notation tvpg(x) := 1
p

∑v+p
n=v+1Kng(x).

1. It is verified that L(Knϕz)(z)
a.c.−→ 0, ∀z ∈ X.

Indeed, applying the definition of almost convergence,

L(Knϕz)(z)
a.c.−→ 0 ⇐⇒ L(tvpϕz)(z) =

1

p

v+p∑
n=v+1

L(Knϕz)(z) → 0,
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as p→∞, uniformly in v, so it suffices to observe that

1

p

v+p∑
n=v+1

L(Knϕz)(z) =
1

p

v+p∑
n=v+1

(
m∑

i=1

ai(z)L(Kngi)(z)

)

=
m∑

i=1

ai(z)

1

p

v+p∑
n=v+1

L(Kngi)(z)

 −→ m∑
i=1

ai(z)Lgi(z) = ϕz(z) = 0,

where we have used hypotheses (v.2) and (k.2).

2. L(tvpu) is bounded on X.

In order to prove this assertion, let z1, z2 ∈ X (z1 6= z2) and define ϕ∗ = ϕz1 +ϕz2 . ¿From

(v.2), it is obvious that Lϕ∗(x) > 0, ∀x ∈ X. As X is a Haussdorf space, then there exist

δ1, δ2 > 0, such that B(z1, δ1) ∩ B(z2, δ2) = ∅. Let µ1, µ2 be the minimum values of ϕz1

y ϕz2 in X −B(z1, δ1) and X −B(z2, δ2) respectively, both necessarily positive. Defining

µ = min{1
2
µ1,

1
2
µ2}, one has that for all x ∈ X

Lu(x) = 1 ≤ µ−1Lϕ∗(x).

Hence µ−1ϕ∗ − u ∈ P . Moreover, according to hypothesis (v.3), for a sufficiently small

value of β, with β ≤ µ, we obtain β−1ϕ∗−u ∈ C. Thus, β−1ϕ∗−u ∈ P∩C. Applying (k.1),

it is obtained that L(Kn(β−1ϕ∗− u)) ≥ 0 and directly β−1L(tvpϕ
∗) ≥ L(tvpu). Using (k.2),

as p→∞, β−1L(tvpϕ
∗) = β−1L(tvpϕz1) + β−1L(tvpϕz2) −→ β−1Lϕz1 + β−1Lϕz2 = β−1Lϕ∗,

uniformly in v. Thus, L(tvpu) is bounded by a convergent and continuous function defined

on a compact set. Therefore, L(tvpu) is bounded.

3. Let fy ∈ A, y ∈ X, be a family of functions for which Lfy(x) is a continuous

function of (x, y) ∈ X ×X and Lfy(y) = 0, ∀y ∈ X. Then L(Knfy)(y)
a.c.−→ 0 uniformly

in y ∈ X.

This assertion is proved as follows: let D = {(y, y)/y ∈ X} in X ×X and let y ∈ X, then

it is verified that for all ε > 0 there exists a neighborhood Vy of the point (y, y) such that

|Lfy(x)| < ε, ∀(x, y) ∈ Vy. Let V = ∪y∈XVy and let F its complement in X ×X which is

clearly compact. Thus we can consider

m = min(x,y)∈FL(ϕy)(x), M = max(x,y)∈FLfy(x),

and write |Lfy(x)| < ε + M
m
Lϕy(x) for all x, y ∈ X. From (v.3), for a sufficiently large

β, it is verified that εu+ βM
m
ϕy ± fy ∈ P ∩ C. Applying the hypothesis (k.1), we obtain

εKnu+ β
M

m
Knϕy ±Knfy ∈ P . Thus,

−εL(Knu)(y)− β
M

m
L(Knϕy)(y) < L(Knfy)(y) < εL(Knu)(y) + β

M

m
L(Knϕy)(y),

and directly

−εL(tvpu)(y)− β
M

m
L(tvpϕy)(y) < L(tvpfy)(y) < εL(tvpu)(y) + β

M

m
L(tvpϕy)(y).
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Therefore ∣∣∣L(tvpfy)(y)
∣∣∣ < εL(tvpu)(y) + β

M

m
L(tvpϕy)(y).

¿From the steps 1 and 2 of this proof, there exists U0 ∈ R, upper bound of L(tvpu), and

p0 ∈ N, such that for all p > p0∣∣∣L(tvpfy)(y)
∣∣∣ < εU0 + ε = ε(U0 + 1),

for all v ∈ N and for all y ∈ X.

4. Now we are in a position to prove the theorem. Given f ∈ A, we define the family

fy = f − Lf(y)

Lϕ∗(y)
ϕ∗, ∀y ∈ X.

The functions Lfy(x) are continuous in x and y with Lfy(y) = 0, ∀y ∈ X and satisfy the

conditions of claim 3 above. Then we can assure that, for p→∞,

L(tvpfy)(y) = L(tvpf)(y)− Lf(y)

Lϕ∗(y)
L(tvpϕ

∗)(y) −→ 0,

uniformly in v and uniformly in y. Now the proof is over just observing that L(tvpϕ
∗)(y) →

Lϕ∗(y) uniformly in v and y.

3 Applications to Ck([0, 1])

Now we state two results for sequences of operators defined on Ck([0, 1]). We omit the

proofs since they are analogous to the ones of parallel results for the usual convergence

that can be found in [6]. We shall denote ej(x) = xj.

Let σ = {σi}i≥0 be a sequence with σi ∈ {−1, 0, 1}. Let h, k ∈ N0 := N ∪ {0} with

0 ≤ h < k and σhσk 6= 0. We define the following cones in Ck([0, 1]):

Ch,k(σ) = {f ∈ Ck([0, 1]) : σiD
if ≥ 0, h ≤ i ≤ k}.

Let Γ = {i : h ≤ i < k, σi 6= 0, σi+1 = 0, σiσi+2 6= −1}. If Γ = ∅, then we call Ch,k(σ) a

cone of type I, and if Γ 6= ∅, then we call Ch,k(σ) a cone of type II.

We denote σ[j] = {σ[j]
i }i≥0 with σ

[j]
i = 0 for i 6= j and σ

[j]
j = σj.

Corollary 1 Let Ch,k(σ) be a cone of type I or II. Let Kn : Ck([0, 1]) → Ck([0, 1]) be a

sequence of linear operators.

If Kn(Ch,k(σ)) ⊂ Ch,k(σ
[k]) and Dk(Knej)

a.c.−→ Dkej for every j = h, ..., k + 2, then

Dk(Knf)
a.c.−→ Dkf ∀f ∈ Ck([0, 1]).

Corollary 2 Let Ch,k(σ) be a cone of type II and let r ∈ Γ. Let Kn : Ck([0, 1]) →
Ck([0, 1]) be a sequence of linear operators.

If Kn(Ch,k(σ)) ⊂ Ch,k(σ
[r]) and Dr(Knej)

a.c.−→ Drej for every j = h, h+ 1, ..., k, then

Dr(Knf)
a.c.−→ Drf ∀f ∈ Ck([0, 1]).
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4 Applications in C2π

In [2, Theorem 5] it is shown a Korovkin-type condition for the almost convergence of

positive operators defined on C2π. It is stated as follows:

Theorem 2 Let Kn be a sequence of positive linear operators defined on C2π. The se-

quence Kn(ψ) is almost convergent to ψ, uniformly on [0, 2π], for each ψ ∈ C2π, if and

only if Kn(e0), Kn(sin(·)) and Kn(cos(·)) are almost convergent respectively to e0, sin(·)
and cos(·), uniformly on [0, 2π].

Now we present a generalization of this result considering operators non necessarily

positive.

For i ∈ N0 ∪ {+∞} we define the linear operators Li : C2π → C2π as follows: let

φ ∈ C2π and let ai, bi be the Fourier coefficients associated to φ, then L0φ(x) = a0

2
and

for i 6= 0,

Liφ(x) =
a0

2
+

i∑
k=1

ak cos(kx) + bk sin(kx).

Let h, k, m be integers with 0 ≤ h ≤ k < m. Let us consider the following cones in C2π:

Ch,k
2π = {φ ∈ C2π : Liφ ≥ 0, h ≤ i ≤ k}.

Corollary 3 Let Pm = {φ ∈ C2π : Lmφ ≥ 0}. Let Kn : C2π → C2π be a sequence of

linear operators.

If Kn(Ch,k
2π ∩ Pm) ⊂ Pm and Lm(Knψ)

a.c.−→ Lmψ for all ψ ∈ {e0, sin(i·), cos(i·) : i =

1, 2, . . . , k + 1}, then

Lm(Knφ)
a.c.−→ Lmφ ∀φ ∈ C2π.

Proof We apply Theorem 1 with A = B = C2π, L = Lm, C = Ch,k
2π , where we

consider C2π = C(X), being X identified with the compact set S = {z ∈ R2/|z| = 1}.
The condition (v.1) is trivially verified by u = e0 ∈ C2π.

Let z ∈ X, we define ϕz(x) = 1 + 1
2!

+ 1
3!

+ · · · + 1
(k+1)!

− cos(x − z) − 1
2!

cos2(x −
z) − 1

3!
cos3(x − z) − · · · − 1

(k+1)!
cos(k+1)(x − z) ∀x ∈ X. As the function ϕz admits a

Fourier expansion with no null coefficients till order (k + 1) ≤ m, then for all x ∈ X,

Lmϕz(x) = ϕz(x) ≥ 0, and the equality is satisfied if and only if x = z. Moreover, if

h > 0, then Li(ϕz(x)) = 1 + 1
2!

+ 1
3!

+ · · ·+ 1
(k+1)!

− cos(x− z)− 1
2!

cos2(x− z)− 1
3!

cos3(x−
z) − · · · − 1

i!
cosi(x − z) ≥ 0, ∀x ∈ X, ∀i ∈ {h, h + 1, ..., k}, so ϕz ∈ C2π

h,k, and if h = 0,

then L0ϕz(x) = 1 +
1

2!
+

1

3!
+ · · ·+ 1

(k + 1)!
> 0 trivially. Hence, (v.2) is verified.

Now we show that condition (v.3) is also satisfied. Given φ ∈ C2π, for i = h, h+ 1, . . . , k,

let mi = min{(Liφ)(x), x ∈ X}. Now if we consider β = maxh≤i≤k{(k+1)!|mi|+1}, then

for i = h, h+ 1, ..., k

Li(βϕz + φ)(x) = β(Liϕz)(x) + (Liφ)(x) ≥ |mi|(k + 1)!(Liϕz)(x) + (Liϕz)(x) +mi
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≥ |mi|+
1

(k + 1)!
+mi ≥

1

(k + 1)!
> 0,

and therefore βϕz + φ ∈ Ch,k
2π . The rest of the conditions are verified obviously.

Remark 2 Theorem 2 appears considering m = ∞ and k = 0.
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