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Abstract

In this paper, we study iterative processes of the Secant-type to solve nonlinear

equations in the form F (x) = 0. To analyse the semilocal convergence of these meth-

ods, we generalize the usually (k, p)-Hölder continuous conditions and we consider

ω-conditioned dividided differences.
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1 Introduction

We present iterative processes to solve nonlinear equations of the form

F (x) = 0, (1)

which use divided differences instead of the derivative of F , as for example the Secant

method ([1], [2], [3]). Remember that a bounded linear operator [x, y; F ] : Ω ⊆ X → Y is

called a divided difference of first order for the operator F on the points x and y (x 6= y)

if the following equality holds:

[x, y; F ](x− y) = F (x)− F (y). (2)

To analyse the semilocal convergence of these iterative processes, conditions of the type:

‖[x, y; F ]− [u, v; F ]‖ ≤ k(‖x− u‖p + ‖y − v‖p); p ∈ [0, 1],

has been required. Observe that if p = 1 in the last inequality, F has a Lipschitz continu-

ous divided difference [3] and, in other case, we say that F has a (k, p)-Hölder continuous

divided difference [1].
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In this paper, we consider a class of Secant-like iterations given by
x(−1), x(0) given

y(n) = λx(n) + (1− λ)x(n−1), λ ∈ [0, 1],

x(n+1) = x(n) −
[
y(n), x(n); F

]−1
F (x(n))

(3)

and we study the semilocal convergence of these processes using ω-conditioned dividided

differences, that is:

‖[x, y; F ]− [u, v; F ]‖ ≤ ω(‖x− u‖, ‖y − v‖); x, y, u, v ∈ Ω,

where ω : R+×R+ → R+ is a continuous nondecreasing function in its two arguments.

Finally, a numerical example is considered where the Secant-like iterations are applied.

2 Recurrence Relations

We establish the recurrence relations from which the convergence of (3) is proved later.

Let x(−1), x(0) ∈ Ω and assume

(I) ‖x(−1) − x(0)‖ = α,

(II) there exists L0
−1 =

[
y(0), x(0); F

](−1)
such that ‖L0

−1‖ ≤ β,

(III) ‖L0
−1F (x(0))‖ ≤ η,

(IV) ‖[x, y; F ]− [u, v; F ]‖ ≤ ω(‖x− u‖, ‖y − v‖); x, y, u, v ∈ Ω, where

ω : R+×R+ → R+ is a continuous nondecreasing funtion in its two arguments.

(V) there exists a nondecreasing funtion h : [0, 1] → R such that, if t ∈ [0, 1], ω(tu1, tu2) ≤
h(t)ω(u1, u2).

This condition (V) is included in orden to can be more precise in certain bounds we

shall carry out later on.

We denote

a−1 =
η

η + α
, a0 = βω (λη + (1− λ)α, η) ,

and define the scalar sequence

an = f(an−1)an−1h (f(an−2)an−2) , n ≥ 1, (4)

where

f(x) =
1

1− x
.
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As L0
−1 exist, then x(1) is well defined and, from the initial hypotheses, it follows that

‖x(1) − x(0)‖ = ‖L0
−1F (x(0))‖ ≤ η = f(a−1)a−1‖x(0) − x(−1)‖, (5)

‖L0
−1‖ω

(
λ‖x(1) − x(0)‖+ (1− λ)‖x(0) − x(−1)‖, ‖x(1) − x(0)‖

)
≤ a0.

Next, we prove the following recurrence relations that are satisfied by sequences (3) and

(4). Then, by induction on n, the following items are shown for n ≥ 1:

(in) ∃Ln
−1 =

[
y(n), x(n); F

]−1
such that ‖Ln

−1‖ ≤ f(an−1)‖Ln−1
−1‖,

(iin) ‖x(n+1) − x(n)‖ ≤ f(an−1)an−1‖x(n) − x(n−1)‖,

(iiin) ‖Ln
−1‖ ω(λ‖x(n+1) − x(n)‖+ (1− λ)‖x(n) − x(n−1)‖, ‖x(n+1) − x(n)‖) ≤ an

Assuming that a0 ≤ a−1 ≤ 1/2 and x(1) ∈ Ω, by (IV) we obtain

‖I − L0
−1L1‖ ≤ ‖L0

−1‖‖L0 − L1‖ = ‖L0
−1‖ ‖

[
y(1), x(1); F

]
−

[
y(0), x(0); F

]
‖

≤ ‖L0
−1‖ω(‖y(1) − y(0)‖, ‖x(1) − x(0)‖)

≤ ‖L0
−1‖ω(λ‖x(1) − x(0)‖+ (1− λ)‖x(0) − x(−1)‖, ‖x(1) − x(0)‖)

≤ βω(λη + (1− λ)α, η) = a0 < 1

and, by the Banach lemma, L1
−1 exists and

‖L1
−1‖ ≤ f(a0)‖L0

−1‖.

Consequently iterate x(2) is well defined.

By (2) and (3), we have

F (x(1)) = F (x(0))−
[
x(0), x(1); F

]
(x(0) − x(1)) =

(
L0 −

[
x(0), x(1); F

])
(x(0) − x(1)).

Then, by (IV), we get

‖F (x(1))‖ ≤ ‖
[
x(0), x(1); F

]
−

[
y(0), x(0); F

]
‖ ‖x(1) − x(0)‖

≤ ω
(
‖x(0) − y(0)‖, ‖x(1) − x(0)‖

)
‖x(1) − x(0)‖

≤ ω
(
(1− λ)‖x(0) − x(−1)‖, ‖x(1) − x(0)‖

)
‖x(1) − x(0)‖

≤ ω
(
λ‖x(1) − x(0)‖+ (1− λ)‖x(0) − x(−1)‖, ‖x(1) − x(0)‖

)
‖x(1) − x(0)‖

≤ ω (λη + (1− λ)α, η) ‖x(1) − x(0)‖

and then

‖x(2) − x(1)‖ ≤ ‖L1
−1‖ ‖F (x(1))‖ ≤ f(a0)‖L0

−1‖ ‖F (x(1))‖ ≤ f(a0) a0 ‖x(1) − x(0)‖.
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Note that, if x < 1, f(x)x ≤ 1 ⇔ x ≤ 1/2. So, finally, from (i1), (ii1), (5) and a0 ≤ a−1 ≤
1/2, we have

‖L1
−1‖ω

(
λ‖x(2) − x(1)‖+ (1− λ)‖x(1) − x(0)‖, ‖x(2) − x(1)‖

)

≤ f(a0)‖L0
−1‖

ω
(
λf(a0)a0‖x(1) − x(0)‖+ (1− λ)f(a−1)a−1‖x(0) − x(−1)‖, f(a0)a0‖x(1) − x(0)‖

)
≤ f(a0)βω (λη + (1− λ)α, η) h(f(a−1)a−1) ≤ f(a0)a0h(f(a−1)a−1) = a1.

Now if we suppose that {an} is decreasing, x(n+1) ∈ Ω and (in) -(iiin) are true for a

fixed n ≥ 1; we analogously prove (in+1) -(iiin+1).

3 Semilocal convergence of Secant-like methods

We study the real sequence defined in (4) in order to obtain the convergence of sequence

(3) in Banach spaces. It will be sufficient that an < 1/2 (n ≥ 0) and {x(n)} is a Cauchy

sequence.

Lemma 3.1 Let {an} be the sequence defined in (4). If a1 < a0 < a−1 < 1/2, then the

sequence {an} is decreasing.

Proof. We use mathematical induction on n. If we assume an < an−1 < an−2, we

have that an+1 < an, since f and h are increasing:

an+1 = f(an)anh (f(an−1)an−1) ≤ f(an−1)an−1h (f(an−2)an−2) = an.

Theorem 3.2 Let x(−1), x(0) ∈ Ω and λ ∈ [0, 1]. Let us suppose (I)-(V) and the

hypotheses of lemma 3.1 are satisfied. If B(x(0), R) ⊆ Ω, where R = 1−a0

1−2a0
η, then the

sequence {x(n)} given by (3) is well defined, remains in B(x(0), R) and converges to a

solution x∗ of equation F (x) = 0 in B(x(0), R). Moreover the solution x∗ is unique in

B(x(0), τ) ∩ Ω, where τ is the smallest positive root of βω (τ + (1− λ)α, R) = 1.

Proof. It is clear that an < 1/2. We then prove that x(n) ∈ B(x(0), R) for n ≥ 1 and

{x(n)} is a Cauchy sequence. Thus, for arbitrary positive integers m and n, we consider

‖x(n+m) − x(n)‖ ≤ ‖x(n+m) − x(n+m−1)‖+ ‖x(n+m−1) − x(n+m−2)‖+ · · ·+ ‖x(n+1) − x(n)‖

≤ f(an+m−2)an+m−2 · · · f(an+1)an+1 f(an)an‖x(n+1) − x(n)‖

+f(an+m−3)an+m−3 · · · f(an+1)an+1f(an)an‖x(n+1) − x(n)‖

+ · · ·+ f(an)an‖x(n+1) − x(n)‖+ ‖x(n+1) − x(n)‖
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=

n+m−2∏
j=n

f(aj)aj +
n+m−3∏

j=n

f(aj)aj + · · ·+ f(an)an + 1

‖x(n+1) − x(n)‖. (6)

Now, by lemma 3.1 since f is increasing, {aj} is decreasing (aj < a0), we have

f(aj)aj < f(a0)a0 =
a0

1− a0

= ∆ < 1.

Thus, for n ≥ 1:

‖x(n+m) − x(n)‖ <
[
∆m−1 + ∆m−2 + · · ·+ ∆ + 1

]
‖x(n+1) − x(n)‖

<
1−∆m

1−∆
∆n‖x(1) − x(0)‖.

If n = 0, by (6),

‖x(m) − x(0)‖ <
1−∆m

1−∆
‖x(1) − x(0)‖,

from this, we deduce

‖x(m) − x(0)‖ <
η

1−∆
= R.

Consequently, for all n, x(n) ∈ B(x(0), R) and the sequence {x(n)} is well defined. Secondly,

{x(n)} is a Cauchy sequence and has a limit x∗ in B(x(0), R). Thirdly, we see that x∗ is a

zero of F . Since

‖F (x(n))‖

≤ ω
(
λ‖x(n) − x(n−1)‖+ (1− λ)‖x(n−1) − x(n−2)‖, ‖x(n) − x(n−1)‖

)
‖x(n) − x(n−1)‖,

and ‖x(n) − x(n−1)‖ → 0 as n →∞, we obtain F (x∗) = 0.

Finally, to prove the uniqueness of solution x∗, we assume that z∗ is another root of

(1) in B(x(0), τ) ∩ Ω and consider the operator A = [z∗, x∗; F ]. We have

‖L0
−1A− I‖ ≤ ‖L0

−1‖ ‖A− L0‖ ≤ ‖L0
−1‖‖[z∗, x∗; F ]−

[
y(0), x(0); F

]
‖

≤ βω
(
‖z∗ − y(0)‖, ‖x∗ − x(0)‖

)
≤ βω

(
‖z∗ − x(0)‖+ ‖x(0) − y(0)‖, ‖x∗ − x(0)‖

)
< βω (τ + (1− λ)α, R) = 1

and the operator A is then invertible, and consequently z∗ = x∗.

Remark. Note that the operator F is differentiable when the divided differences

are Lipschitz o (k, p)-Hölder continuous for all x, y, u, v ∈ Ω [3]. But, under condition

(IV), F is differentiable if ω(0, 0) = 0. Therefore, if ω(0, 0) 6= 0, theorem is true for

non-differentiable operators.
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4 Numerical example

We consider the following boundary value problem:
d2x(t)

dt2
+ x(t)1+p + x(t)2 = 0, p ∈ [0, 1]

x(0) = x(1) = 0.

(7)

Firstly, we apply the semilocal convergence result given above to approximate the solution

of the equation (7). Secondly, we show how the speed of convergence for (3) varies along

with λ.

We divide the interval [0, 1] into subintervals and let l = 1/n. We denote the points

of subdivision by t0 = 0 < t1 < t2 < · · · < tn−1 < tn = 1, with the corresponding values

of the function x0 = x(t0) = 0, . . . , xn−1 = x(tn−1), xn = x(tn) = 0. We first approximate

the second derivative x′′(t) in the differential equation by

x′′(ti) ≈ (xi+1 − 2xi + xi−1)/l
2, i = 1, 2, . . . , n− 1.

Discretizing the differential equation we obtain the following system of non-linear equa-

tions 
2x1 − l2x1+p

1 − l2x2
1 − x2 = 0,

−xi−1 + 2xi − l2x1+p
i − l2x2

i − xi+1 = 0, i = 2, . . . , n− 2,

−xn−2 + 2xn−1 − l2x1+p
n−1 − l2x2

n−1 = 0.

(8)

We have an operator F : Rn−1 → Rn−1 such that F (x) = H(x)− l2g(x), where

H =



2 −1 0 · · · 0

−1 2 −1 · · · 0

0 −1 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · 2


, g(x) =


x1+p

1 + x2
1

x1+p
2 + x2

2
...

x1+p
n−1 + x2

n−1

 , x =


x1

x2
...

xn−1



Then, we apply theorem 3.2 to find a solution x∗ of the equation F (x) = 0.

We have

F ′(x) = H − l2(1 + p)


xp

1 0 · · · 0

0 xp
2 · · · 0

...
...

. . .
...

0 0 · · · xp
n−1

− 2l2


x1 0 · · · 0

0 x2 · · · 0
...

...
. . .

...

0 0 · · · xn−1


In this case, we consider

[u, v; F ] =
∫ 1

0
F ′ (u + t(v − u)) dt.

So we study the value ‖F ′(x) − F ′(u)‖ to obtain a bound for ‖[x, y; F ] − [u, v; F ]‖. For

all x, u ∈ Rn−1 with |xi| > 0, |ui| > 0, (i = 1, 2, · · · .n − 1) and taking into account the
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max-norm it follows

‖F ′(x)− F ′(u)‖ = ‖diag{l2(1 + p) (up
i − xp

i ) + 2l2(ui − xi)}‖

= max
1≤i≤n−1

|l2(1 + p) (up
i − xp

i ) + 2l2(ui − xi)|

≤ (1 + p)l2 [ max
1≤i≤n−1

|ui − xi| ]p + 2l2‖u− x‖ = (1 + p)l2‖u− x‖p + 2l2‖u− x‖.

Therefore

‖[x, y; F ]− [u, v; F ]‖ ≤
∫ 1

0
‖F ′ (x + t(y − x))− F ′ (u + t(v − u)) ‖ dt

≤ l2
∫ 1

0
((1 + p)‖(1− t)(x− u) + t(y − v)‖p + 2‖(1− t)(x− u) + t(y − v)‖) dt

≤ l2(1 + p)
∫ 1

0
((1− t)p‖x− u‖p + tp‖y − v‖p) dt + 2l2

∫ 1

0
((1− t)‖x− u‖+ t‖y − v‖) dt

≤ l2 (‖x− u‖p + ‖y − v‖p + ‖x− u‖+ ‖y − v‖)

Consider ω(u1, u2) = l2 (up
1 + up

2 + u1 + u2) , h(t) = tp. Now we apply the iteration (3)

for λ = 0 to approximate the solution of F (x) = 0

We choose p = 1/2, n = 10, then (8) gives 9 equations. Since a solution of (7)

would vanish at the end points and be positive in the interior, a reasonable choice of

initial approximation seems to be 10sinπt = z(−1)(t). This is, z
(−1)
i = z(−1)(ti) = 10sinπti,

z(0)(ti) = z(−1)(ti)− 10−5, i = 1, 2, ...9.

Using the Method (3) for (λ = 0), after two iterations we obtain

z(1) =



2.453176290658909

4.812704101582601

6.8481873135861

8.252997367741953

8.75737771678512

8.252997367741953

6.8481873135861

4.812704101582601

2.453176290658909



, z(2) =



2.404324055268407

4.713971539035271

6.7003394962933925

8.066765882171131

8.556329565792526

8.066765882171131

6.7003394962933924

4.713971539035271

2.404324055268407



.

Then we take x(−1) = z(1), and x(0) = z(2). With the notation of theorem 3.2 we can

easily obtain the following result:

α = 0.201048, β = 15.319, η = 0.0346555

a1 = 0.0638626 < a0 = 0.133313 < a−1 = 0.14703 < 1/2

R = 0.0409552, τ = 4.0272

All the hypotheses of theorem 3.2 are now satisfied. Consequently, iteration (3) converges

to unique solution x∗ in B(x(0), τ) of equation F (x) = 0.
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We obtain the vector x∗ as the aproximate solution of system (8) :

x∗ =



2.394640794786742

4.694882371216001

6.672977546934751

8.033409358893319

8.520791423704788

8.033409358893319

6.67297754693475

4.694882371216

2.394640794786742



.

Finally, we apply (3) for different values of the parameter λ.

The following table contains the errors ‖x∗ − z(n)‖ for the iterates z(n) generated by

the Secant-like methods for different λ.

n λ = 0 λ = 0.7 λ = 0.99

1 2.36586× 10−1 2.36585× 10−1 2.36585× 10−1

2 3.55381× 10−2 1.55367× 10−2 5.96404× 10−3

3 8.82627× 10−4 1.37074× 10−4 5.55811× 10−6

4 3.50678× 10−6 7.33869× 10−8 4.1064× 10−11

5 3.50793× 10−10 3.41061× 10−13 7.10543× 10−15

6 7.10543× 10−15 3.55271× 10−15

7 5.32907× 10−15

As we can see in table, iteration (3) converges faster to x∗, when λ is increased.

Note that, in this example, the convergence can not be guaranteed by classical studies,

where used divided differences are Lipschitz or Hölder continuous, whereas we can do it

by the technique presented in this paper.
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