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Abstract

In this paper, we construct a modification of Newton’s method to accelerate

the convergence of this method to the approximation of the positive n-th root of a

positive real number. From this modification, we can define a new iterative process

with prefixed order q ∈ N, q ≥ 2.
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1 Introduction

The problem of the approximation of the n-th root of a positive real number R,

has been widely studied by different authors (see [1],[2]). This problem is equivalent to

consider the function f(t) = tn −R and solve the equation

f(t) = 0. (1)

We denote by s a solution of this non-linear equation in a given interval. There are many

ways to solve (1). So, for instance, in the particular case of the calculation of square roots,

we have the famous Heron’s formula (75 b.C. approx.):

tk+1 =
1

2

(
tk +

R

tk

)
, k ≥ 0.

According to some authors (see [3]), this algorithm was known by the Mesopotamian

civilizations almost two thousand years before Christ. Heron also obtained formulas to

calculate cubic roots and higher ones.
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The French algebrist F. Viète (1540-1603), studied the problem of the approximation of

roots in non-linear equations. His method was based on the consideration of a polynomical

equation, with real coefficients and one real root in the following form:

a1t + a2t
2 + a3t

3 + · · ·+ ant
n = a0.

Then, for the initial approximation t0, yield
∑n

i=1 ait
i
0 < a0, it is considered that t = t0+s1

and we obtain the equation
∑n

i=1 bis
i
1 = b0, from which we get another approximation

in the same conditions of t0 and we denote it by t1. So, for a recurrent procedure we

can obtain an approach to the solution of the polynomical equation. This approach of

approximation plus correction has been essential in the development of the construction

of processes to approximate the solutions of an equation. One of the methods more widely

used is the Newton’s method [4], which is defined by the following iterative process: Given

an initial approximation t0, we consider

tk+1 = tk −
f(tk)

f ′(tk)
, k ≥ 0.

This iterative process still follows the approach of approximation plus correction already

considered by Viète. This method and its extension to the solution of systems of non-

linear equations are the basis of the most frequently used techniques to solve non-linear

algebraic equations. This iterative process has the advantage of being easy to apply for

any non-linear equation, but it needs the derivability of the function. This construction

has been smoothed considering approximations of the derivate in the following way:

f ′(tk) ∼
f(tk)− f(tk−1)

tk − tk−1

.

In this case, we obtain the Secant method [4]. It is an established fact [5] that the

convergence of the Newton method is quadratic, at least for a t0 sufficiently close to

the solution. A modern approach is the one proposed by Dubeau [5], who applied the

Newton’s method to functions

p(t) = tβ−n(tn −R),

where β ∈ R is looked for in order to get cubic convergence. In fact, the value β = (n+1)/2

has been obtained as the appropiate for this purpose.

2 Construction of iterative processes with a fixed

convergence order

In this section our aim is to construct new iterative processes to obtain an approx-

imation to the solution of (1). The construction of the methos is adapted according to
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the order of convergence that we want to obtain. This problem has been studied by Neta

[6], in the case of square roots. This construction is based on Gander’s idea [7], which is

applied to equation (1). Gander uses the following result, with f and H having a sufficient

number of continuous derivatives in a neighborhood of s.

Let s be a simple zero of f and H any function such that H(0) = 1, H ′(0) =
1

2

and |H ′′(0)| < ∞. The iteration tk+1 = F (tk) with F (t) = t − H(Lf (t))
f(t)

f ′(t)
, where

Lf (t) =
f(t)f ′′(t)

f ′(t)2
, is of third order.

According to the result, we suggest the family of iterative processes in the form:

tk+1 = G(tk) = tk −

(
1 +

1

2
Lf (tk) +

∑
i≥2

aiLf (tk)
i

)
f(tk)

f ′(tk)
, (2)

for an initial approximation t0, is formed by iterative processes with at least cubic conver-

gence. In study [8], is considered an uniparametric family of iterative methods, included

in the previous family, which let them to obtain, an iterative method with order four,

fixing to the value of the parameter. Now, if we consider algorithm (2), we can truncate

the series and obtain then the following algorithm:

tk+1 = G(tk) = tk −

(
1 +

1

2
Lf (tk) +

q−2∑
i=2

aiLf (tk)
i

)
f(tk)

f ′(tk)
, k ≥ 0, (3)

for an initial approximation t0, which gives us a (q − 3)-parametric family of iterative

processes. Then, we try to construct a process which allows us to obtain the highest

order of convergence to solve (1), and then calculate the n-th root of a positive real R

number. For this, we consider the first elemental result of the analysis.

Lemma 1

Let be a function h : [a, b] −→ R with h ∈ C(k+2(a, b). If s exist, with s ∈ (a, b) and

h(s) = 0, then the function F (t) = h(t)k+1 has at least its first k derivates null in s.

Proof.

From the assumptions, we can consider h(t) = (t−s)mg(t), where g : [a, b] −→ R with

g(s) 6= 0 and m ≥ 1. Then, it follows that F (t) = (t−s)m(k+1)g(t)k+1 and, from Leibnitz’s

formula to calculate the successive derivates in the product of funtions, we obtain:

F (j(t) =

j∑
i=0

(
j

i

)
((t− s)m(k+1))(i(g(t)k+1)(j−i =

=

j∑
i=0

(
j

i

)
((k + 1)m)((k + 1)m− 1) · · · ((k + 1)m− i + 1)((t− s)m(k+1)−i)(g(t)k+1)(j−i.
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Therefore, for 1 ≤ j ≤ (k + 1)m− 1, it follows that F (j(s) = 0.

Besides, for j = (k + 1)m, we get F ((k+1)m)(s) = ((k + 1)m)!, and since m ≥ 1, the

result is obtained.

Summing up these results and the Gander’s result, we will consider the iterative pro-

cesses of (3), which are at least cubically convergent, but now we want to increase the

order of convergence, using the parameters ai, i = 2, · · · , q − 2, when they are applied to

solve equation (1). In [9], we see that, for a free parameter, we get order of convergence

four. Then, in these conditions, we wonder whether it is possible, to obtain the optimum

q order of convergence. It is known that, for an iterative process in the form tk+1 = G(tk)

to approach the solution of (1), if G is a sufficiently differentiable function, provides a

convergence method of q-th order if:

G(s) = s, G′(s) = G′′(s) = G(3(s) = · · · = G(q−1(s) = 0, G(q(s) 6= 0,

where s is the root of (1). Then, applying the Gander’s result, we get

G(s) = s, G′(s) = G′′(s) = 0.

To study the remaining conditions, we consider the following equalities:

d

dt
(Lf (t))

f(t)

f ′(t)
= [1 + Lf (t)Lf ′(t)− 2Lf (t)]Lf (t), (4)

d

dt

(
f(t)

f ′(t)

)
= 1− Lf (t). (5)

Then, we obtain an exprexion of G′(t) depending on Lf (t). As Lf (s) = 0, applying

Lemma 1, we can to obtain conditions upon the parameters ai, according to the order of

convergence that we want to obtain.

Theorem 2

The iterative process of (3) has q order of convergence if

ai =
(in− 1)((i− 1)n− 1) · · · (2n− 1)

(i + 1)!(n− 1)i−1
, 2 ≤ i ≤ q − 2. (6)

Proof.

From (3), we get

G′(t) = 1−

(
1

2
+

q−2∑
i=2

aiiLf (t)
i−1

)
L′f (t)

f(t)

f ′(t)
−

(
1 +

1

2
Lf (t) +

q−2∑
i=2

aiLf (t)
i

)
(1− Lf (t)).

Hence, using equalities (4) and (5) we obtain:

G′(t) =

(
3

2
− 1

2
L′f (t)− 3a2

)
Lf (t)

2 +
(
2q − 3− (q − 2)L′f (t)

)
aq−2Lf (t)

q−1+
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+

q−2∑
i=3

[
((2i− 1)− (i− 1)L′f (t))ai−1 − (1 + i)ai

]
Lf (t)

i.

If we use (6) and

Lf ′(t) =
n− 2

n− 1
,

then it follows

G′(t) =
((q − 1)n− 1)((q − 2)n− 1) · · · (2n− 1)

(q − 1)!(n− 1)q−2
Lf (t)

q−1. (7)

Next, applying Lemma 1, to h(t) = Lf (t) = (t− s)g(t), we have:

G′′(s) = G(3(s) = · · · = G(q−1(s) = 0, G(q(s) 6= 0.

The proof is then complete.

Therefore, we have obtained the optimum situation according to the parameters.

Then, from (1), this is equivalent to fix n and define a new iterative process with prefixed

q order q ∈ N q ≥ 2, for an initial t0, in the following way:

tk+1 = tk −

(
1 +

1

2
Lf (tk) +

q−2∑
i=2

(in− 1)((i− 1)n− 1) · · · (2n− 1)

(i + 1)!(n− 1)i−1
Lf (tk)

i

)
f(tk)

f ′(tk)
, k ≥ 0.

(8)

3 Monotonous Convergence

In this section, we will study the semilocal monotonous convergence of the iterative

process that we have constructed in the previous section, which is defined in (8).

Note that, for the iterative process tk+1 = G(tk), we have obtained the value of G′(t)

in (7). Therefore, from the previous reasoning and considering the sign of Lf (t) it is easy

to prove the following result:

Theorem 3

Let t0 be with f(t0) > 0. The iterative process given in (7) defines a {tk} monotonous

sequence which converges to the solution s with q order of convergence.

Proof. Note that since R > 0, we can consider two situations for n: even or odd.

When n is even, there are two roots r1 and r2 such that r2 = −r1. Therefore, there are

two possible cases: t0 < r1 or t0 > r2.

If t0 > r2 : First, we observe, for ai given in (6), that

t1 − t0 = −

(
1 +

1

2
Lf (t0) +

q−2∑
i=2

aiLf (t0)
i

)
f(t0)

f ′(t0)
≤ 0,

and then t1 ≤ t0.
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Besides, since G′(t) > 0 in (s, t0), it follows immediately that:

t1 − s = G(t0)−G(s) = G′(θ0)(t0 − s) ≥ 0, θ0 ∈ (s, t0),

and then t1 > s.

Supposing by an analogous reasoning, that tk−1 > tk and tk > s we obtain tk+1 < tk

and tk+1 > s. Then, there exists l = lim
k→+∞

tk and, by letting k → +∞ in (8), it follows

f(l) = 0 and therefore l = s.

If t0 < r1, then Lf (t0) > 0 and the proof is analogous.

When n is odd, as f(t0) > 0, then t0 > s and Lf (t0) > 0, and therefore the proof is

similar to the one applied when n is even.

Besides, according to Theorem 3, iterative process (8) has q order of convergence.

4 Numerical tests

In this section, from a simple problem such as the calculation of 4-th root for the

number R = 5040, we observe the behavior of the new iterative processes defined in (8).

We choose different starting points: t0 = 100, t0 = 1000 and t0 = 5040, and consider

several orders of convergence: q = 25, q = 100, q = 200 and q = 500. The results

obtained are shown in tables 1, 2, 3 and 4.

k q = 25 q = 25 q = 25

0 100 1000 5040

1 36.74074352765773 367.2594078713632 1850.987341155527

2 13.78793737712009 134.8797661648172 679.7924898159161

3 8.432497797757524 49.54189526835151 249.6602243561512

4 8.425731861221042 18.31600608010673 91.69101404317729

5 8.699152481929406 33.69358878768427

6 8.425731861221042 12.75408517346861

7 8.426787834656201

8 8.425731861221042

Table 1. Order q = 25
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k q = 100 q = 100 q = 100

0 100 1000 5040

1 25.88912937297498 258.4619174345599 1302.647847549595

2 8.697071398569527 66.8050413187296 336.6848238695849

3 8.42573186122104 17.40997673500065 87.02131700814318

4 8.425731861221042 8.426343403916963 22.55680503055836

5 8.425731861221042 8.496264562007763

6 8.425731861221042

Table 2. Order q = 100

k q = 200 q = 200 q = 200

0 100 1000 5040

1 21.7893786702938 217.1693682186719 1094.533250464947

2 8.428058184376935 47.16960671889299 237.6990704001984

3 8.42573186122104 10.90692375403867 51.62634535346908

4 8.425731861221042 8.425731861221042 11.72388342496529

5 8.425731861221042

Table 3. Order q = 200

k q = 500 q = 500 q = 500

0 100 1000 5040

1 17.40667310616728 172.627448849747 870.0416139602313

2 8.425731861221051 29.82832538422122 150.1931580361902

3 8.425731861221042 8.438272160150252 25.97010873665306

4 8.425731861221042 8.42637570583592

5 8.425731861221042

Table 4. Order q = 500

In view of the results, see Figure 1, we can deduce that, from a fixed order and

according to the starting point considered, it is not necessary to increase the order of

convergence, since the computational cost increases and the speed of convergence is not

improved.

According to the tests carried out, it seems that an order of convergence between 100

and 200 is enough to obtain optimum speed of convergence. The study of the optimum

speed of convergence is open to further studies.
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Figure 1. Orders and iterations.
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