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Monograf́ıas del Semin. Matem. Garćıa de Galdeano. 27: 281–288, (2003).

Abstract

Within the framework of the Hamiltonian Mechanics in extended phase space,

the transformation from the enlarged Delaunay chart (as considered by Bond &

Broucke and Bond & Janin in the late 1970s and early 1980s), leading to the con-

struction of a canonical set of DS (Delaunay–Similar or Delaunay–Scheifele) elliptic

Keplerian orbital elements proposed by Scheifele and Graf, is generalized so as to

create a general, unified pattern for the systematic derivation of any set of ellip-

tic DS orbital elements with respect to an arbitrary independent variable (some

kind of anomaly–like parameter introduced by a generalized Sundman–type time–

transformation). An adequate modification of the generating function of the canon-

ical mapping takes into account the unspecified nature of the new phase variables.
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Delaunay and Delaunay–Similar (DS) elements, time transformation, anomalies.
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1 Extended Phase Space and DS Elements

As a general rule in many mathematical and physical contexts, the time t is usually

viewed and treated as a parameter completely different from the spatial–like coordinates

(which are dependent variables). In the present paper we consider the generating function

of a canonical transformation in an 8–dimensional, extended phase space, in which the

dimensions corresponding to “space” and “time” are contemplated, on an equal footing,

as similar coordinates. In such a case, some other adequate parameter (fictitious time

or pseudo–time) should be used to replace t in the description of the evolution of the

system (either in the configuration space or in the phase space); that reparametrizing

pseudo–time will then take the role of the differentiation and integration parameter.
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The homogeneous canonical formalism takes advantage of an elegant procedure due to

Poincaré (1905, vol. I, Ch. 1, §12, pp. 13–16): the dimensionality of ordinary phase space

is enlarged with two additional dimensions, giving rise to the concept of extended phase

space: the physical time t is included as a dependent variable, a generalized coordinate

in the canonical set, whose conjugate momentum is related to the original Hamiltonian

(after a change of sign). Time is thus treated on a common basis with the other (spatial–

like) coordinates, and the momentum conjugate to this “time–coordinate” is the negative

of the original Hamiltonian in ordinary phase–space formulation. The extended–phase–

space approach facilitates the introduction of new independent variables different from

the physical time. Further details are found, e.g., in Stiefel & Scheifele (1971, §30, §34,

§37), Scheifele (1970a, 1972), Goldstein (1980, §7.9, §8.4, and Ch. 8, Problem 32).

For the extended–phase–space canonical treatment, reduction and approximate an-

alytical integration (with the help of canonical perturbation techniques) of perturbed

Keplerian Hamiltonian systems related to the zonal model of gravitational geopotential

in Artificial Satellite Theory, Scheifele and his collaborators (1970a, §2.2; 1970b; 1972,

Part B; 1974) developed an analytical approach based on canonical transformations lead-

ing to the definition of new sets of eight dependent phase variables (resembling, in some

sense, the classical Delaunay elements of the elliptic Kepler problem) and the use of new

independent variables different from the physical time. Elements of the motion are to

be understood as in Stiefel & Scheifele (1971, §18, pp. 83–84): quantities which, in the

unperturbed problem, are constant or linear functions of the independent variable.

Reparametizing the motion with the new regularizing time parameter (introduced by

means of a differential relation generalizing the time–transformation named after Sund-

man [1912, p. 127]), the new phase variables become canonical orbital elements with

respect to that pseudo–time. A remarkable feature of Scheifele’s approach is the fact that

the Keplerian true anomaly (but also, in some cases, the eccentric anomaly) is incorpo-

rated into the theory so as to play a dual role: both as the independent variable and as a

canonical element belonging to the new chart. The orbital variables created by Scheifele

are widely known as DS (Delaunay–Similar or Delaunay–Scheifele) variables or elements.

As with the traditional construction of the classical Delaunay elements for the bound

Kepler problem, the starting point for the standard development of the different transfor-

mations to DS sets (as usually presented by Scheifele and his co–workers) is based on the

formulation of the Keplerian Hamiltonian in polar spherical coordinates –in the extended

phase space– and its solution on integrating the corresponding Hamilton–Jacobi partial

differential equation by separation of variables. The amount of work and effort at every

intermediate calculation step and in the interpretation of results is considerable.

This drawback is softened if, form the start, the Kepler problem is given in the (en-

larged) polar nodal chart (Deprit, 1981), from which the Keplerian true anomaly is easily
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made a coordinate–type phase variable, incorporating it as a DS canonical orbital element.

Deprit’s approach to the TR–map defining Scheifele’s (1970b, 1972) DS set of Keplerian

elements gave a clue to establish a general scheme (Floŕıa, 1994) and a unified pattern for

the systematic derivation of arbitrary sets of DS elements in a true–like anomaly.

A different approch to obtain DS elements can be taken. A generating function of the

second type (Goldstein 1980, §9.1, pp. 383–384), depending on the old coordinates and

the new momenta, allowed Bond & Broucke (1980) to perform a completely canonical

transformation in extended phase space, from the (enlarged) Delaunay elliptic Keplerian

elements to the set of DS canonical orbital variables applied by Scheifele & Graf (1974) to

the oblateness perturbation problem in Artificial Satellite Theory. These Scheifele–Graf

variables make up a set of Keplerian orbital elements with respect to the true anomaly.

With the same generating function, Bond & Janin (1981) constructed analogous canonical

orbital elements (of the Scheifele–Graf type) with respect to any anomaly–like parameter.

These authors focus on the Scheifele & Graf (1974) DS set. In line with some previous

work (e.g., Floŕıa 1994) concerning the general and systematic derivation of a wide class of

different DS sets and their application to perturbed Keplerian systems, we will propose a

general expression for the Bond–Broucke generating function and develop the transforma-

tion from (extended) Delaunay elements to any possible DS set of (unspecified) canonical

orbital variables. In so doing, the canonical sets of phase variables due to Scheifele and

his co–workers fit into our unified pattern. As in Bond & Janin (1981), the new Keplerian

orbital elements use an arbitrary anomaly–type parameter as the independent variable.

2 From Delaunay Elements to Generic DS Variables

The Delaunay set, (lD, gD, hD;LD, GD, HD), enlarged by the canonically conjugate pair of

phase variables (t;T ), the time t and the negative of the total energy, is the starting point

for the transition to a new set of generic DS variables in the 8–dimensional phase space.

Inspired by Bond & Broucke (1980) and Bond & Janin (1981), a more general functional

structure for the generating function of a canonical transformation to unspecified DS

Keplerian orbital elements is given. In Delaunay formulation, a Keplerian Hamiltonian,

H0 ≡ H0 (− , − , − ; LD , − , − ) = − µ2/( 2L2
D ) , (1)

is cyclic in five Delaunay variables: with respect to the physical time, the Delaunay set

is a set of canonical Keplerian elements (Stiefel & Scheifele 1971, §18). Some Keplerian

relations for the standard orbital elements a ≡ a(LD), e ≡ e(LD, GD), p ≡ p(GD),

I(GD, HD), ω(gD) and Ω(hD), the distance r (length of the position vector of the mobile),

and the eccentric and true anomalies, E ≡ E(r;LD, GD) and f ≡ f(r;LD, GD), are

LD =
√
µ a , G2

D = µ a
(

1 − e 2
)

= µ p , HD = GD cos I , (2)
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e2 = 1 −
(
G2
D/L

2
D

)
, p = G2

D/µ , gD = ω , hD = Ω , (3)

r = a ( 1 − e cosE ) , r = p/ (1 + e cos f) , (4)

lD = Φ (E) = E − e sinE, dlD/dE = dΦ(E)/dE = 1 − e cosE = r/a . (5)

A transformation (t, lD, gD, hD;T, LD, GD, HD) −→ (ψ, l, g, h; Ψ, L,G,H), from the

Delaunay elements (in extended phase space) to a generic set of Delaunay–Similar vari-

ables, is defined by a generating function S ≡ SDS( t , lD , gD , hD ; Ψ , L , G , H ),

S = t L +
[
µ/
√

2L
]
lD + F (Ψ , L , G , H) Z(t) + gDG + hDH , (6)

more general than the generator (Bond & Broucke 1980; Bond & Janin 1981) yielding the

Scheifele–Graf (1974) canonical set. Here F (Ψ , L , G , H) is an arbitrary function of the

new canonical momenta, and Z(t) is some unspecified function of t . With the notations

Z ′(t) ≡ dZ(t)/dt , F(Ψ,L,G,H) ≡ ∂F/∂(Ψ, L,G,H) = ∇(Ψ,L,G,H)F , (7)

the generating relations derived from S lead to the implicit transformation equations

ψ = ∂S/∂Ψ = FΨ Z(t) =⇒ Z(t) = ψ/FΨ , (8)

l = ∂S/∂L = t −
[
µ/ (2L)3/2

]
lD + FL Z(t), generalized Kepler’s equation, (9)

g = ∂S/∂G = gD + FG Z(t) = gD + (FG/FΨ)ψ , (10)

h = ∂S/∂H = hD + FH Z(t) = hD + (FH/FΨ)ψ , (11)

LD = ∂S/∂lD = µ/
√

2L ⇒ L = µ2/
(
2L2

D

)
, (12)

T = ∂S/∂t = L + F (Ψ, L,G,H) (dZ/dt) =⇒ F = (T − L ) /Z ′(t) , (13)

GD = ∂S/∂gD = G , HD = ∂S/∂hD = H . (14)

In the DS chart, with t as the independent variable, the homogeneous Hamiltonian is

H0 −→ (H0)h = T −
[
µ2/

(
2L2

D

)]
=⇒ H̃h = F (Ψ , L , G , H) Z ′(t) , (15)

whose numerical value is zero (Bond & Broucke 1980, p. 358; Poincaré 1905, §12).

3 Introduction of a New Independent Variable

The functional structure of Hamiltonian (15) is simplified if one reparametrizes the motion

in terms of new independent variables τ , anomaly–like parameters adequately introduced

by generalized Sundman–type (1912, p. 127) differential time–transformations,

t −→ τ : dt = f̃ dτ, t ′ ≡ dt/dτ = f̃ , f̃ being a function of the new variables.(16)

With τ as the fictitious time (Scheifele 1970a; Stiefel & Scheifele 1971, §34), H̃h becomes

K0 = f̃ H̃h = F (Ψ , L , G , H) (dZ/dt) f̃ , (17)

284



which can be appropriately simplified if some conditions are imposed on the unspecified

time–related functions f̃ and Z(t). For our Keplerian system, take f̃ and Z(t) such that

f̃ (dZ/dt) = 1 =⇒ K0 = F (Ψ , L , G , H) ≡ 0 (along solutions) (18)

in the phase space of the new variables. But F (Ψ , L , G , H) still remains unspecified.

Specific choices of F (Floŕıa 1994) produce particular DS sets, and a wide class of DS sets

of canonical orbital elements can be defined. The simple structure of a canonical solution,

parametrized by the new pseudo–time τ , to the Hamilton equations generated by K0,

(Ψ, L,G,H)′ = − ∂F/∂ (ψ, l, g, h) = − ∇(ψ,l,g,h)F = 0 (19)

=⇒ (Ψ, L,G,H) = (Ψ0, L0, G0, H0) , (20)

(ψ, l, g, h)′ = ∂F/∂ (Ψ, L,G,H) = F(Ψ,L,G,H) (21)

=⇒ (ψ, l, g, h) = (FΨ,FL,FG,FH) τ + (ψ0, l0, g0, h0) , (22)

where (ψ0, l0, g0, h0,Ψ0, L0, G0, H0) are integration constants, shows that these DS phase

variables are a set of Keplerian elements of the motion with respect to τ . In particular,

ψ ′ ≡ dψ/dτ = ∂K0/∂Ψ = FΨ =⇒ ψ = FΨ τ + const. (23)

=⇒ dψ/dt = (dψ/dτ) (dτ/dt) = FΨ (dτ/dt) = FΨ/f̃ , (24)

and the generalized anomaly ψ must be consistent with the choice of the reparametrizing

function f̃ (Bond & Janin 1981, p. 161). Some Keplerian elements are now rewritten as

a = L2
D/µ = µ/ ( 2L ) , n =

√
µ/a 3 = ( 2L )3/2/µ , (25)

e 2 = 1 − (p/a) = 1 −
(
G2
D/L

2
D

)
= 1 −

(
2LG2/µ2

)
. (26)

From the generating relations and formulae for the Delaunay variables, Eq. (9) becomes

t = l +
[
µ/ (2L)3/2

]
[E − e sinE ]− (FL/FΨ)ψ , generalized Kepler equation,(27)

from which the time transformation is developed to obtain f̃ for each special choice of ψ.

4 Study of the Reparametrizing Function

As in Bond & Janin (1981, §4), the total derivative of Eq. (27) with respect to τ , say

f̃ = t ′ ≡ dt/dτ = l′ +
[
µ/ ( 2L )3/2

]′
Φ(E) +

[
µ/ ( 2L )3/2

]
Φ′(E)

− (FL/FΨ)′ ψ − (FL/FΨ)ψ′ , (28)

thanks to the Hamilton equations [(19) and (21)], the constant orbital eccentricity e in

the pure Kepler problem, Formula (25) for the semi–major axis a, and Eq. (5), reads

f̃ = FL +
[
µ/ ( 2L )3/2

]
(d lD/d τ) − (FL/FΨ)FΨ

=
[
µ/ ( 2L)3/2

]
[ 1 − e cosE ] (dE/dτ) =

[
r/
√

2L
]

(dE/dτ) . (29)
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From Eq. (23), dψ = FΨdτ , derivatives with respect to τ are rewritten as derivatives with

respect to ψ, and we obtain the reparametrizing function in the time transformation (16):

dE/dτ = (dE/dψ) (dψ/dτ) ⇒ f̃ =
(
r/
√

2L
)

[∂F (Ψ, L,G,H) /∂Ψ] (dE/dψ) , (30)

Z(t) = ψ/FΨ =⇒ dZ(t)/dτ = ψ′/FΨ = 1 =⇒ Z(t) = τ + const. (31)

As a conclusion, “in order to evaluate f̃ for a particular anomaly ψ, the eccentric anomaly

E must be found as a function E = E(ψ) of ψ (Bond & Janin 1981, p. 165)”. According

to the preceding developments, a summary of final general results reads:

• After the completely canonical transformation to generic DS phase variables derived

from the generating function (6), the fundamental relations ψ −→ E = E(ψ) , dE/dψ ,

t = l +
µ

( 2L )3/2
[E − e sinE ]−

(FL
FΨ

)
ψ , generalized Kepler’s equation , (32)

dt = f̃ dτ, f̃ =
r√
2L

∂F (Ψ, L,G,H)

∂Ψ

dE

dψ
, change of independent variable , (33)

complete the introduction of canonical orbital elements, depending on any kind of new

independent variable, for the Keplerian system governed by (1). Appropriate selections

of F(Ψ, L,G,H) = K0 are related to special instances of elliptic DS sets (Floŕıa 1994).

Our considerations involve three unspecified mathematical and dynamical objects: the

generalized anomaly ψ = FΨZ(t) = FΨτ + const. (which also appears as a DS variable),

and the functions f̃ (in the differential relation (16) defining the time transformation

t→ τ) and F(Ψ, L,G,H) = K0 (attached, in each particular case, to a specific DS set).

5 Some Remarks on Certain Special Cases

The most commonly used sets of DS variables, as obtained and applied by Scheifele and

his collaborators (see papers by these authors; also, Deprit 1981, and Floŕıa 1994), lead

to simple expressions for K0 (which would be reflected in some subsequent simplification

in the resulting final formulae when dealing with these simple cases). For instance:

K0 = Ψ =⇒ (FΨ,FL,FG,FH) = ( 1 , 0 , 0 , 0 ) , (34)

K0 = GΨ −
(

Ψ2/2
)

=⇒ (FΨ,FL,FG,FH) = (G − Ψ , 0 , Ψ , 0 ) , (35)

K0 = Ψ −
(
µ/
√

2L
)

=⇒ (FΨ,FL,FG,FH) =
(

1 , µ/( 2L )3/2, 0 , 0
)
. (36)

This last option is just the one occurring in the study by Scheifele & Graf (1974), which

is at the root of the articles by Bond & Broucke (1980) and Bond & Janin (1981) whose

generalization motivated the present research.

Appart from this freedom in the choice of the dependent DS variables, both ψ and

f̃ remain unspecified. On the basis of the preceding scheme, particular selections of the
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anomaly–type parameter ψ lead to the determination of the functional structure and

dependence of the reparametrizing function f̃ . In line with Bond & Janin (1981, §4), we

summarize the results and conclusions pertaining to some significant choices for ψ.

5.1 Eccentric anomaly

ψ = E =⇒ dE/dψ = 1 , (37)

f̃ =
(
r/
√

2L
)
FΨ , (38)

t =

{
l +

[
µ

( 2L )3/2
− FL
FΨ

]
E

}
− µ

( 2L )3/2
e sinE . (39)

5.2 True anomaly

ψ = f =⇒ dE/df = r/
√
a p , (40)

f̃ =
(
r2/
√
µ p

)
FΨ =

(
r2/G

)
FΨ =

(
r2/GD

)
FΨ , (41)

t =
{
l − FL

FΨ

f
}

+
µ

( 2L )3/2
(E − e sinE ) . (42)

5.3 Mean anomaly

ψ = lD = Φ(E) =⇒ dE/dlD = a/r , (43)

f̃ =
[
µ/ ( 2L )3/2

]
FΨ , (44)

t = l +

[
µ

( 2L )3/2
− FL
FΨ

]
lD . (45)

5.4 Length of orbital arc (Brumberg 1992; Floŕıa 1997)

ψ = σ =⇒ dσ/dE = a
√

1 − e2 cos2E , (46)

f̃ = FΨ r
1/2/

√
2µ − 2L r = FΨ r

1/2/
√
µ ( 1 + e cosE ) , (47)

t =
{
l − FL

FΨ

σ
}

+
µ

( 2L )3/2
(E − e sinE ) . (48)
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